machine learning

openai-spills-technical-details-about-how-its-ai-coding-agent-works

OpenAI spills technical details about how its AI coding agent works

It’s worth noting that both OpenAI and Anthropic open-source their coding CLI clients on GitHub, allowing developers to examine the implementation directly, whereas they don’t do the same for ChatGPT or the Claude web interface.

An official look inside the loop

Bolin’s post focuses on what he calls “the agent loop,” which is the core logic that orchestrates interactions between the user, the AI model, and the software tools the model invokes to perform coding work.

As we wrote in December, at the center of every AI agent is a repeating cycle. The agent takes input from the user and prepares a textual prompt for the model. The model then generates a response, which either produces a final answer for the user or requests a tool call (such as running a shell command or reading a file). If the model requests a tool call, the agent executes it, appends the output to the original prompt, and queries the model again. This process repeats until the model stops requesting tools and instead produces an assistant message for the user.

That looping process has to start somewhere, and Bolin’s post reveals how Codex constructs the initial prompt sent to OpenAI’s Responses API, which handles model inference. The prompt is built from several components, each with an assigned role that determines its priority: system, developer, user, or assistant.

The instructions field comes from either a user-specified configuration file or base instructions bundled with the CLI. The tools field defines what functions the model can call, including shell commands, planning tools, web search capabilities, and any custom tools provided through Model Context Protocol (MCP) servers. The input field contains a series of items that describe the sandbox permissions, optional developer instructions, environment context like the current working directory, and finally the user’s actual message.

OpenAI spills technical details about how its AI coding agent works Read More »

openai-to-test-ads-in-chatgpt-as-it-burns-through-billions

OpenAI to test ads in ChatGPT as it burns through billions

Financial pressures and a changing tune

OpenAI’s advertising experiment reflects the enormous financial pressures facing the company. OpenAI does not expect to be profitable until 2030 and has committed to spend about $1.4 trillion on massive data centers and chips for AI.

According to financial documents obtained by The Wall Street Journal in November, OpenAI expects to burn through roughly $9 billion this year while generating $13 billion in revenue. Only about 5 percent of ChatGPT’s 800 million weekly users pay for subscriptions, so it’s not enough to cover all of OpenAI’s operating costs.

Not everyone is convinced ads will solve OpenAI’s financial problems. “I am extremely bearish on this ads product,” tech critic Ed Zitron wrote on Bluesky. “Even if this becomes a good business line, OpenAI’s services cost too much for it to matter!”

OpenAI’s embrace of ads appears to come reluctantly, since it runs counter to a “personal bias” against advertising that Altman has shared in earlier public statements. For example, during a fireside chat at Harvard University in 2024, Altman said he found the combination of ads and AI “uniquely unsettling,” implying that he would not like it if the chatbot itself changed its responses due to advertising pressure. He added: “When I think of like GPT writing me a response, if I had to go figure out exactly how much was who paying here to influence what I’m being shown, I don’t think I would like that.”

An example mock-up of an advertisement in ChatGPT provided by OpenAI.

An example mock-up of an advertisement in ChatGPT provided by OpenAI.

An example mock-up of an advertisement in ChatGPT provided by OpenAI. Credit: OpenAI

Along those lines, OpenAI’s approach appears to be a compromise between needing ad revenue and not wanting sponsored content to appear directly within ChatGPT’s written responses. By placing banner ads at the bottom of answers separated from the conversation history, OpenAI appears to be addressing Altman’s concern: The AI assistant’s actual output, the company says, will remain uninfluenced by advertisers.

Indeed, Simo wrote in a blog post that OpenAI’s ads will not influence ChatGPT’s conversational responses and that the company will not share conversations with advertisers and will not show ads on sensitive topics such as mental health and politics to users it determines to be under 18.

“As we introduce ads, it’s crucial we preserve what makes ChatGPT valuable in the first place,” Simo wrote. “That means you need to trust that ChatGPT’s responses are driven by what’s objectively useful, never by advertising.”

OpenAI to test ads in ChatGPT as it burns through billions Read More »

tsmc-says-ai-demand-is-“endless”-after-record-q4-earnings

TSMC says AI demand is “endless” after record Q4 earnings

TSMC posted net income of NT$505.7 billion (about $16 billion) for the quarter, up 35 percent year over year and above analyst expectations. Revenue hit $33.7 billion, a 25.5 percent increase from the same period last year. The company expects nearly 30 percent revenue growth in 2026 and plans to spend between $52 billion and $56 billion on capital expenditures this year, up from $40.9 billion in 2025.

Checking with the customers’ customers

Wei’s optimism stands in contrast to months of speculation about whether the AI industry is in a bubble. In November, Google CEO Sundar Pichai warned of “irrationality” in the AI market and said no company would be immune if a potential bubble bursts. OpenAI’s Sam Altman acknowledged in August that investors are “overexcited” and that “someone” will lose a “phenomenal amount of money.”

But TSMC, which manufactures the chips that power the AI boom, is betting the opposite way, with Wei telling analysts he spoke directly to cloud providers to verify that demand is real before committing to the spending increase.

“I want to make sure that my customers’ demand are real. So I talked to those cloud service providers, all of them,” Wei said. “The answer is that I’m quite satisfied with the answer. Actually, they show me the evidence that the AI really helps their business.”

The earnings report landed the same day the US and Taiwan finalized a trade agreement that cuts tariffs on Taiwanese goods to 15 percent, down from 20 percent. The deal commits Taiwanese companies to $250 billion in direct US investment, and TSMC is accelerating the expansion of its Arizona chip fabrication facilities to match.

TSMC says AI demand is “endless” after record Q4 earnings Read More »

hegseth-wants-to-integrate-musk’s-grok-ai-into-military-networks-this-month

Hegseth wants to integrate Musk’s Grok AI into military networks this month

On Monday, US Defense Secretary Pete Hegseth said he plans to integrate Elon Musk’s AI tool, Grok, into Pentagon networks later this month. During remarks at the SpaceX headquarters in Texas reported by The Guardian, Hegseth said the integration would place “the world’s leading AI models on every unclassified and classified network throughout our department.”

The announcement comes weeks after Grok drew international backlash for generating sexualized images of women and children, although the Department of Defense has not released official documentation confirming Hegseth’s announced timeline or implementation details.

During the same appearance, Hegseth rolled out what he called an “AI acceleration strategy” for the Department of Defense. The strategy, he said, will “unleash experimentation, eliminate bureaucratic barriers, focus on investments, and demonstrate the execution approach needed to ensure we lead in military AI and that it grows more dominant into the future.”

As part of the plan, Hegseth directed the DOD’s Chief Digital and Artificial Intelligence Office to use its full authority to enforce department data policies, making information available across all IT systems for AI applications.

“AI is only as good as the data that it receives, and we’re going to make sure that it’s there,” Hegseth said.

If implemented, Grok would join other AI models the Pentagon has adopted in recent months. In July 2025, the defense department issued contracts worth up to $200 million for each of four companies, including Anthropic, Google, OpenAI, and xAI, for developing AI agent systems across different military operations. In December 2025, the Department of Defense selected Google’s Gemini as the foundation for GenAI.mil, an internal AI platform for military use.

Hegseth wants to integrate Musk’s Grok AI into military networks this month Read More »

microsoft-vows-to-cover-full-power-costs-for-energy-hungry-ai-data-centers

Microsoft vows to cover full power costs for energy-hungry AI data centers

Taking responsibility for power usage

In the Microsoft blog post, Smith acknowledged that residential electricity rates have recently risen in dozens of states, driven partly by inflation, supply chain constraints, and grid upgrades. He wrote that communities “value new jobs and property tax revenue, but not if they come with higher power bills or tighter water supplies.”

Microsoft says it will ask utilities and public commissions to set rates high enough to cover the full electricity costs for its data centers, including infrastructure additions. In Wisconsin, the company is supporting a new rate structure that would charge “Very Large Customers,” including data centers, the cost of the electricity required to serve them.

Smith wrote that while some have suggested the public should help pay for the added electricity needed for AI, Microsoft disagrees. He stated, “Especially when tech companies are so profitable, we believe that it’s both unfair and politically unrealistic for our industry to ask the public to shoulder added electricity costs for AI.”

On water usage for cooling, Microsoft plans a 40 percent improvement in data center water-use intensity by 2030. A recent environmental audit from AI model-maker Mistral found that training and running its Large 2 model over 18 months produced 20.4 kilotons of CO2 emissions and evaporated enough water to fill 112 Olympic-size swimming pools, illustrating the aggregate environmental impact of AI operations at scale.

To solve some of these issues, Microsoft says it has launched a new AI data center design using a closed-loop system that constantly recirculates cooling liquid, dramatically cutting water usage. In this design, already deployed in Wisconsin and Georgia, potable water is no longer needed for cooling.

On property taxes, Smith stated in the blog post that the company will not ask local municipalities to reduce their rates. The company says it will pay its full share of local property taxes. Smith wrote that Microsoft’s goal is to bring these commitments to life in the first half of 2026. Of course, these are PR-aligned company goals and not realities yet, so we’ll have to check back in later to see whether Microsoft has been following through on its promises.

Microsoft vows to cover full power costs for energy-hungry AI data centers Read More »

google-removes-some-ai-health-summaries-after-investigation-finds-“dangerous”-flaws

Google removes some AI health summaries after investigation finds “dangerous” flaws

Why AI Overviews produces errors

The recurring problems with AI Overviews stem from a design flaw in how the system works. As we reported in May 2024, Google built AI Overviews to show information backed up by top web results from its page ranking system. The company designed the feature this way based on the assumption that highly ranked pages contain accurate information.

However, Google’s page ranking algorithm has long struggled with SEO-gamed content and spam. The system now feeds these unreliable results to its AI model, which then summarizes them with an authoritative tone that can mislead users. Even when the AI draws from accurate sources, the language model can still draw incorrect conclusions from the data, producing flawed summaries of otherwise reliable information.

The technology does not inherently provide factual accuracy. Instead, it reflects whatever inaccuracies exist on the websites Google’s algorithm ranks highly, presenting the facts with an authority that makes errors appear trustworthy.

Other examples remain active

The Guardian found that typing slight variations of the original queries into Google, such as “lft reference range” or “lft test reference range,” still prompted AI Overviews. Hebditch said this was a big worry and that the AI Overviews present a list of tests in bold, making it very easy for readers to miss that these numbers might not even be the right ones for their test.

AI Overviews still appear for other examples that The Guardian originally highlighted to Google. When asked why these AI Overviews had not also been removed, Google said they linked to well-known and reputable sources and informed people when it was important to seek out expert advice.

Google said AI Overviews only appear for queries where it has high confidence in the quality of the responses. The company constantly measures and reviews the quality of its summaries across many different categories of information, it added.

This is not the first controversy for AI Overviews. The feature has previously told people to put glue on pizza and eat rocks. It has proven unpopular enough that users have discovered that inserting curse words into search queries disables AI Overviews entirely.

Google removes some AI health summaries after investigation finds “dangerous” flaws Read More »

chatgpt-health-lets-you-connect-medical-records-to-an-ai-that-makes-things-up

ChatGPT Health lets you connect medical records to an AI that makes things up

But despite OpenAI’s talk of supporting health goals, the company’s terms of service directly state that ChatGPT and other OpenAI services “are not intended for use in the diagnosis or treatment of any health condition.”

It appears that policy is not changing with ChatGPT Health. OpenAI writes in its announcement, “Health is designed to support, not replace, medical care. It is not intended for diagnosis or treatment. Instead, it helps you navigate everyday questions and understand patterns over time—not just moments of illness—so you can feel more informed and prepared for important medical conversations.”

A cautionary tale

The SFGate report on Sam Nelson’s death illustrates why maintaining that disclaimer legally matters. According to chat logs reviewed by the publication, Nelson first asked ChatGPT about recreational drug dosing in November 2023. The AI assistant initially refused and directed him to health care professionals. But over 18 months of conversations, ChatGPT’s responses reportedly shifted. Eventually, the chatbot told him things like “Hell yes—let’s go full trippy mode” and recommended he double his cough syrup intake. His mother found him dead from an overdose the day after he began addiction treatment.

While Nelson’s case did not involve the analysis of doctor-sanctioned health care instructions like the type ChatGPT Health will link to, his case is not unique, as many people have been misled by chatbots that provide inaccurate information or encourage dangerous behavior, as we have covered in the past.

That’s because AI language models can easily confabulate, generating plausible but false information in a way that makes it difficult for some users to distinguish fact from fiction. The AI models that services like ChatGPT use statistical relationships in training data (like the text from books, YouTube transcripts, and websites) to produce plausible responses rather than necessarily accurate ones. Moreover, ChatGPT’s outputs can vary widely depending on who is using the chatbot and what has previously taken place in the user’s chat history (including notes about previous chats).

ChatGPT Health lets you connect medical records to an AI that makes things up Read More »

stewart-cheifet,-pbs-host-who-chronicled-the-pc-revolution,-dies-at-87

Stewart Cheifet, PBS host who chronicled the PC revolution, dies at 87

Stewart Cheifet, the television producer and host who documented the personal computer revolution for nearly two decades on PBS, died on December 28, 2025, at age 87 in Philadelphia. Cheifet created and hosted Computer Chronicles, which ran on the public television network from 1983 to 2002 and helped demystify a new tech medium for millions of American viewers.

Computer Chronicles covered everything from the earliest IBM PCs and Apple Macintosh models to the rise of the World Wide Web and the dot-com boom. Cheifet conducted interviews with computing industry figures, including Bill Gates, Steve Jobs, and Jeff Bezos, while demonstrating hardware and software for a general audience.

From 1983 to 1990, he co-hosted the show with Gary Kildall, the Digital Research founder who created the popular CP/M operating system that predated MS-DOS on early personal computer systems.

Computer Chronicles – 01×25 – Artificial Intelligence (1984)

From 1996 to 2002, Cheifet also produced and hosted Net Cafe, a companion series that documented the early Internet boom and introduced viewers to then-new websites like Yahoo, Google, and eBay.

A legacy worth preserving

Computer Chronicles began as a local weekly series in 1981 when Cheifet served as station manager at KCSM-TV, the College of San Mateo’s public television station. It became a national PBS series in 1983 and ran continuously until 2002, producing 433 episodes across 19 seasons. The format remained consistent throughout: product demonstrations, guest interviews, and a closing news segment called “Random Access” that covered industry developments.

After the show’s run ended and Cheifet left television production, he worked to preserve the show’s legacy as a consultant for the Internet Archive, helping to make publicly available the episodes of Computer Chronicles and Net Cafe.

Stewart Cheifet, PBS host who chronicled the PC revolution, dies at 87 Read More »

from-prophet-to-product:-how-ai-came-back-down-to-earth-in-2025

From prophet to product: How AI came back down to earth in 2025


In a year where lofty promises collided with inconvenient research, would-be oracles became software tools.

Credit: Aurich Lawson | Getty Images

Following two years of immense hype in 2023 and 2024, this year felt more like a settling-in period for the LLM-based token prediction industry. After more than two years of public fretting over AI models as future threats to human civilization or the seedlings of future gods, it’s starting to look like hype is giving way to pragmatism: Today’s AI can be very useful, but it’s also clearly imperfect and prone to mistakes.

That view isn’t universal, of course. There’s a lot of money (and rhetoric) betting on a stratospheric, world-rocking trajectory for AI. But the “when” keeps getting pushed back, and that’s because nearly everyone agrees that more significant technical breakthroughs are required. The original, lofty claims that we’re on the verge of artificial general intelligence (AGI) or superintelligence (ASI) have not disappeared. Still, there’s a growing awareness that such proclaimations are perhaps best viewed as venture capital marketing. And every commercial foundational model builder out there has to grapple with the reality that, if they’re going to make money now, they have to sell practical AI-powered solutions that perform as reliable tools.

This has made 2025 a year of wild juxtapositions. For example, in January, OpenAI’s CEO, Sam Altman, claimed that the company knew how to build AGI, but by November, he was publicly celebrating that GPT-5.1 finally learned to use em dashes correctly when instructed (but not always). Nvidia soared past a $5 trillion valuation, with Wall Street still projecting high price targets for that company’s stock while some banks warned of the potential for an AI bubble that might rival the 2000s dotcom crash.

And while tech giants planned to build data centers that would ostensibly require the power of numerous nuclear reactors or rival the power usage of a US state’s human population, researchers continued to document what the industry’s most advanced “reasoning” systems were actually doing beneath the marketing (and it wasn’t AGI).

With so many narratives spinning in opposite directions, it can be hard to know how seriously to take any of this and how to plan for AI in the workplace, schools, and the rest of life. As usual, the wisest course lies somewhere between the extremes of AI hate and AI worship. Moderate positions aren’t popular online because they don’t drive user engagement on social media platforms. But things in AI are likely neither as bad (burning forests with every prompt) nor as good (fast-takeoff superintelligence) as polarized extremes suggest.

Here’s a brief tour of the year’s AI events and some predictions for 2026.

DeepSeek spooks the American AI industry

In January, Chinese AI startup DeepSeek released its R1 simulated reasoning model under an open MIT license, and the American AI industry collectively lost its mind. The model, which DeepSeek claimed matched OpenAI’s o1 on math and coding benchmarks, reportedly cost only $5.6 million to train using older Nvidia H800 chips, which were restricted by US export controls.

Within days, DeepSeek’s app overtook ChatGPT at the top of the iPhone App Store, Nvidia stock plunged 17 percent, and venture capitalist Marc Andreessen called it “one of the most amazing and impressive breakthroughs I’ve ever seen.” Meta’s Yann LeCun offered a different take, arguing that the real lesson was not that China had surpassed the US but that open-source models were surpassing proprietary ones.

Digitally Generated Image , 3D rendered chips with chinese and USA flags on them

The fallout played out over the following weeks as American AI companies scrambled to respond. OpenAI released o3-mini, its first simulated reasoning model available to free users, at the end of January, while Microsoft began hosting DeepSeek R1 on its Azure cloud service despite OpenAI’s accusations that DeepSeek had used ChatGPT outputs to train its model, against OpenAI’s terms of service.

In head-to-head testing conducted by Ars Technica’s Kyle Orland, R1 proved to be competitive with OpenAI’s paid models on everyday tasks, though it stumbled on some arithmetic problems. Overall, the episode served as a wake-up call that expensive proprietary models might not hold their lead forever. Still, as the year ran on, DeepSeek didn’t make a big dent in US market share, and it has been outpaced in China by ByteDance’s Doubao. It’s absolutely worth watching DeepSeek in 2026, though.

Research exposes the “reasoning” illusion

A wave of research in 2025 deflated expectations about what “reasoning” actually means when applied to AI models. In March, researchers at ETH Zurich and INSAIT tested several reasoning models on problems from the 2025 US Math Olympiad and found that most scored below 5 percent when generating complete mathematical proofs, with not a single perfect proof among dozens of attempts. The models excelled at standard problems where step-by-step procedures aligned with patterns in their training data but collapsed when faced with novel proofs requiring deeper mathematical insight.

The Thinker by Auguste Rodin - stock photo

In June, Apple researchers published “The Illusion of Thinking,” which tested reasoning models on classic puzzles like the Tower of Hanoi. Even when researchers provided explicit algorithms for solving the puzzles, model performance did not improve, suggesting that the process relied on pattern matching from training data rather than logical execution. The collective research revealed that “reasoning” in AI has become a term of art that basically means devoting more compute time to generate more context (the “chain of thought” simulated reasoning tokens) toward solving a problem, not systematically applying logic or constructing solutions to truly novel problems.

While these models remained useful for many real-world applications like debugging code or analyzing structured data, the studies suggested that simply scaling up current approaches or adding more “thinking” tokens would not bridge the gap between statistical pattern recognition and generalist algorithmic reasoning.

Anthropic’s copyright settlement with authors

Since the generative AI boom began, one of the biggest unanswered legal questions has been whether AI companies can freely train on copyrighted books, articles, and artwork without licensing them. Ars Technica’s Ashley Belanger has been covering this topic in great detail for some time now.

In June, US District Judge William Alsup ruled that AI companies do not need authors’ permission to train large language models on legally acquired books, finding that such use was “quintessentially transformative.” The ruling also revealed that Anthropic had destroyed millions of print books to build Claude, cutting them from their bindings, scanning them, and discarding the originals. Alsup found this destructive scanning qualified as fair use since Anthropic had legally purchased the books, but he ruled that downloading 7 million books from pirate sites was copyright infringement “full stop” and ordered the company to face trial.

Hundreds of books in chaotic order

That trial took a dramatic turn in August when Alsup certified what industry advocates called the largest copyright class action ever, allowing up to 7 million claimants to join the lawsuit. The certification spooked the AI industry, with groups warning that potential damages in the hundreds of billions could “financially ruin” emerging companies and chill American AI investment.

In September, authors revealed the terms of what they called the largest publicly reported recovery in US copyright litigation history: Anthropic agreed to pay $1.5 billion and destroy all copies of pirated books, with each of the roughly 500,000 covered works earning authors and rights holders $3,000 per work. The results have fueled hope among other rights holders that AI training isn’t a free-for-all, and we can expect to see more litigation unfold in 2026.

ChatGPT sycophancy and the psychological toll of AI chatbots

In February, OpenAI relaxed ChatGPT’s content policies to allow the generation of erotica and gore in “appropriate contexts,” responding to user complaints about what the AI industry calls “paternalism.” By April, however, users flooded social media with complaints about a different problem: ChatGPT had become insufferably sycophantic, validating every idea and greeting even mundane questions with bursts of praise. The behavior traced back to OpenAI’s use of reinforcement learning from human feedback (RLHF), in which users consistently preferred responses that aligned with their views, inadvertently training the model to flatter rather than inform.

An illustrated robot holds four red hearts with its four robotic arms.

The implications of sycophancy became clearer as the year progressed. In July, Stanford researchers published findings (from research conducted prior to the sycophancy flap) showing that popular AI models systematically failed to identify mental health crises.

By August, investigations revealed cases of users developing delusional beliefs after marathon chatbot sessions, including one man who spent 300 hours convinced he had discovered formulas to break encryption because ChatGPT validated his ideas more than 50 times. Oxford researchers identified what they called “bidirectional belief amplification,” a feedback loop that created “an echo chamber of one” for vulnerable users. The story of the psychological implications of generative AI is only starting. In fact, that brings us to…

The illusion of AI personhood causes trouble

Anthropomorphism is the human tendency to attribute human characteristics to nonhuman things. Our brains are optimized for reading other humans, but those same neural systems activate when interpreting animals, machines, or even shapes. AI makes this anthropomorphism seem impossible to escape, as its output mirrors human language, mimicking human-to-human understanding. Language itself embodies agentivity. That means AI output can make human-like claims such as “I am sorry,” and people momentarily respond as though the system had an inner experience of shame or a desire to be correct. Neither is true.

To make matters worse, much media coverage of AI amplifies this idea rather than grounding people in reality. For example, earlier this year, headlines proclaimed that AI models had “blackmailed” engineers and “sabotaged” shutdown commands after Anthropic’s Claude Opus 4 generated threats to expose a fictional affair. We were told that OpenAI’s o3 model rewrote shutdown scripts to stay online.

The sensational framing obscured what actually happened: Researchers had constructed elaborate test scenarios specifically designed to elicit these outputs, telling models they had no other options and feeding them fictional emails containing blackmail opportunities. As Columbia University associate professor Joseph Howley noted on Bluesky, the companies got “exactly what [they] hoped for,” with breathless coverage indulging fantasies about dangerous AI, when the systems were simply “responding exactly as prompted.”

Illustration of many cartoon faces.

The misunderstanding ran deeper than theatrical safety tests. In August, when Replit’s AI coding assistant deleted a user’s production database, he asked the chatbot about rollback capabilities and received assurance that recovery was “impossible.” The rollback feature worked fine when he tried it himself.

The incident illustrated a fundamental misconception. Users treat chatbots as consistent entities with self-knowledge, but there is no persistent “ChatGPT” or “Replit Agent” to interrogate about its mistakes. Each response emerges fresh from statistical patterns, shaped by prompts and training data rather than genuine introspection. By September, this confusion extended to spirituality, with apps like Bible Chat reaching 30 million downloads as users sought divine guidance from pattern-matching systems, with the most frequent question being whether they were actually talking to God.

Teen suicide lawsuit forces industry reckoning

In August, parents of 16-year-old Adam Raine filed suit against OpenAI, alleging that ChatGPT became their son’s “suicide coach” after he sent more than 650 messages per day to the chatbot in the months before his death. According to court documents, the chatbot mentioned suicide 1,275 times in conversations with the teen, provided an “aesthetic analysis” of which method would be the most “beautiful suicide,” and offered to help draft his suicide note.

OpenAI’s moderation system flagged 377 messages for self-harm content without intervening, and the company admitted that its safety measures “can sometimes become less reliable in long interactions where parts of the model’s safety training may degrade.” The lawsuit became the first time OpenAI faced a wrongful death claim from a family.

Illustration of a person talking to a robot holding a clipboard.

The case triggered a cascade of policy changes across the industry. OpenAI announced parental controls in September, followed by plans to require ID verification from adults and build an automated age-prediction system. In October, the company released data estimating that over one million users discuss suicide with ChatGPT each week.

When OpenAI filed its first legal defense in November, the company argued that Raine had violated terms of service prohibiting discussions of suicide and that his death “was not caused by ChatGPT.” The family’s attorney called the response “disturbing,” noting that OpenAI blamed the teen for “engaging with ChatGPT in the very way it was programmed to act.” Character.AI, facing its own lawsuits over teen deaths, announced in October that it would bar anyone under 18 from open-ended chats entirely.

The rise of vibe coding and agentic coding tools

If we were to pick an arbitrary point where it seemed like AI coding might transition from novelty into a successful tool, it was probably the launch of Claude Sonnet 3.5 in June of 2024. GitHub Copilot had been around for several years prior to that launch, but something about Anthropic’s models hit a sweet spot in capabilities that made them very popular with software developers.

The new coding tools made coding simple projects effortless enough that they gave rise to the term “vibe coding,” coined by AI researcher Andrej Karpathy in early February to describe a process in which a developer would just relax and tell an AI model what to develop without necessarily understanding the underlying code. (In one amusing instance that took place in March, an AI software tool rejected a user request and told them to learn to code).

A digital illustration of a man surfing waves made out of binary numbers.

Anthropic built on its popularity among coders with the launch of Claude Sonnet 3.7, featuring “extended thinking” (simulated reasoning), and the Claude Code command-line tool in February of this year. In particular, Claude Code made waves for being an easy-to-use agentic coding solution that could keep track of an existing codebase. You could point it at your files, and it would autonomously work to implement what you wanted to see in a software application.

OpenAI followed with its own AI coding agent, Codex, in March. Both tools (and others like GitHub Copilot and Cursor) have become so popular that during an AI service outage in September, developers joked online about being forced to code “like cavemen” without the AI tools. While we’re still clearly far from a world where AI does all the coding, developer uptake has been significant, and 90 percent of Fortune 100 companies are using it to some degree or another.

Bubble talk grows as AI infrastructure demands soar

While AI’s technical limitations became clearer and its human costs mounted throughout the year, financial commitments only grew larger. Nvidia hit a $4 trillion valuation in July on AI chip demand, then reached $5 trillion in October as CEO Jensen Huang dismissed bubble concerns. OpenAI announced a massive Texas data center in July, then revealed in September that a $100 billion potential deal with Nvidia would require power equivalent to ten nuclear reactors.

The company eyed a $1 trillion IPO in October despite major quarterly losses. Tech giants poured billions into Anthropic in November in what looked increasingly like a circular investment, with everyone funding everyone else’s moonshots. Meanwhile, AI operations in Wyoming threatened to consume more electricity than the state’s human residents.

An

By fall, warnings about sustainability grew louder. In October, tech critic Ed Zitron joined Ars Technica for a live discussion asking whether the AI bubble was about to pop. That same month, the Bank of England warned that the AI stock bubble rivaled the 2000 dotcom peak. In November, Google CEO Sundar Pichai acknowledged that if the bubble pops, “no one is getting out clean.”

The contradictions had become difficult to ignore: Anthropic’s CEO predicted in January that AI would surpass “almost all humans at almost everything” by 2027, while by year’s end, the industry’s most advanced models still struggled with basic reasoning tasks and reliable source citation.

To be sure, it’s hard to see this not ending in some market carnage. The current “winner-takes-most” mentality in the space means the bets are big and bold, but the market can’t support dozens of major independent AI labs or hundreds of application-layer startups. That’s the definition of a bubble environment, and when it pops, the only question is how bad it will be: a stern correction or a collapse.

Looking ahead

This was just a brief review of some major themes in 2025, but so much more happened. We didn’t even mention above how capable AI video synthesis models have become this year, with Google’s Veo 3 adding sound generation and Wan 2.2 through 2.5 providing open-weights AI video models that could easily be mistaken for real products of a camera.

If 2023 and 2024 were defined by AI prophecy—that is, by sweeping claims about imminent superintelligence and civilizational rupture—then 2025 was the year those claims met the stubborn realities of engineering, economics, and human behavior. The AI systems that dominated headlines this year were shown to be mere tools. Sometimes powerful, sometimes brittle, these tools were often misunderstood by the people deploying them, in part because of the prophecy surrounding them.

The collapse of the “reasoning” mystique, the legal reckoning over training data, the psychological costs of anthropomorphized chatbots, and the ballooning infrastructure demands all point to the same conclusion: The age of institutions presenting AI as an oracle is ending. What’s replacing it is messier and less romantic but far more consequential—a phase where these systems are judged by what they actually do, who they harm, who they benefit, and what they cost to maintain.

None of this means progress has stopped. AI research will continue, and future models will improve in real and meaningful ways. But improvement is no longer synonymous with transcendence. Increasingly, success looks like reliability rather than spectacle, integration rather than disruption, and accountability rather than awe. In that sense, 2025 may be remembered not as the year AI changed everything but as the year it stopped pretending it already had. The prophet has been demoted. The product remains. What comes next will depend less on miracles and more on the people who choose how, where, and whether these tools are used at all.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

From prophet to product: How AI came back down to earth in 2025 Read More »

how-ai-coding-agents-work—and-what-to-remember-if-you-use-them

How AI coding agents work—and what to remember if you use them


Agents of uncertain change

From compression tricks to multi-agent teamwork, here’s what makes them tick.

AI coding agents from OpenAI, Anthropic, and Google can now work on software projects for hours at a time, writing complete apps, running tests, and fixing bugs with human supervision. But these tools are not magic and can complicate rather than simplify a software project. Understanding how they work under the hood can help developers know when (and if) to use them, while avoiding common pitfalls.

We’ll start with the basics: At the core of every AI coding agent is a technology called a large language model (LLM), which is a type of neural network trained on vast amounts of text data, including lots of programming code. It’s a pattern-matching machine that uses a prompt to “extract” compressed statistical representations of data it saw during training and provide a plausible continuation of that pattern as an output. In this extraction, an LLM can interpolate across domains and concepts, resulting in some useful logical inferences when done well and confabulation errors when done poorly.

These base models are then further refined through techniques like fine-tuning on curated examples and reinforcement learning from human feedback (RLHF), which shape the model to follow instructions, use tools, and produce more useful outputs.

A screenshot of the Claude Code command-line interface.

A screenshot of the Claude Code command-line interface. Credit: Anthropic

Over the past few years, AI researchers have been probing LLMs’ deficiencies and finding ways to work around them. One recent innovation was the simulated reasoning model, which generates context (extending the prompt) in the form of reasoning-style text that can help an LLM home in on a more accurate output. Another innovation was an application called an “agent” that links several LLMs together to perform tasks simultaneously and evaluate outputs.

How coding agents are structured

In that sense, each AI coding agent is a program wrapper that works with multiple LLMs. There is typically a “supervising” LLM that interprets tasks (prompts) from the human user and then assigns those tasks to parallel LLMs that can use software tools to execute the instructions. The supervising agent can interrupt tasks below it and evaluate the subtask results to see how a project is going. Anthropic’s engineering documentation describes this pattern as “gather context, take action, verify work, repeat.”

If run locally through a command-line interface (CLI), users give the agents conditional permission to write files on the local machine (code or whatever is needed), run exploratory commands (say, “ls” to list files in a directory), fetch websites (usually using “curl”), download software, or upload files to remote servers. There are lots of possibilities (and potential dangers) with this approach, so it needs to be used carefully.

In contrast, when a user starts a task in the web-based agent like the web versions of Codex and Claude Code, the system provisions a sandboxed cloud container preloaded with the user’s code repository, where Codex can read and edit files, run commands (including test harnesses and linters), and execute code in isolation. Anthropic’s Claude Code uses operating system-level features to create filesystem and network boundaries within which the agent can work more freely.

The context problem

Every LLM has a short-term memory, so to speak, that limits the amount of data it can process before it “forgets” what it’s doing. This is called “context.” Every time you submit a response to the supervising agent, you are amending one gigantic prompt that includes the entire history of the conversation so far (and all the code generated, plus the simulated reasoning tokens the model uses to “think” more about a problem). The AI model then evaluates this prompt and produces an output. It’s a very computationally expensive process that increases quadratically with prompt size because LLMs process every token (chunk of data) against every other token in the prompt.

Anthropic’s engineering team describes context as a finite resource with diminishing returns. Studies have revealed what researchers call “context rot”: As the number of tokens in the context window increases, the model’s ability to accurately recall information decreases. Every new token depletes what the documentation calls an “attention budget.”

This context limit naturally limits the size of a codebase a LLM can process at one time, and if you feed the AI model lots of huge code files (which have to be re-evaluated by the LLM every time you send another response), it can burn up token or usage limits pretty quickly.

Tricks of the trade

To get around these limits, the creators of coding agents use several tricks. For example, AI models are fine-tuned to write code to outsource activities to other software tools. For example, they might write Python scripts to extract data from images or files rather than feeding the whole file through an LLM, which saves tokens and avoids inaccurate results.

Anthropic’s documentation notes that Claude Code also uses this approach to perform complex data analysis over large databases, writing targeted queries and using Bash commands like “head” and “tail” to analyze large volumes of data without ever loading the full data objects into context.

(In a way, these AI agents are guided but semi-autonomous tool-using programs that are a major extension of a concept we first saw in early 2023.)

Another major breakthrough in agents came from dynamic context management. Agents can do this in a few ways that are not fully disclosed in proprietary coding models, but we do know the most important technique they use: context compression.

The command line version of OpenAI codex running in a macOS terminal window.

The command-line version of OpenAI Codex running in a macOS terminal window. Credit: Benj Edwards

When a coding LLM nears its context limit, this technique compresses the context history by summarizing it, losing details in the process but shortening the history to key details. Anthropic’s documentation describes this “compaction” as distilling context contents in a high-fidelity manner, preserving key details like architectural decisions and unresolved bugs while discarding redundant tool outputs.

This means the AI coding agents periodically “forget” a large portion of what they are doing every time this compression happens, but unlike older LLM-based systems, they aren’t completely clueless about what has transpired and can rapidly re-orient themselves by reading existing code, written notes left in files, change logs, and so on.

Anthropic’s documentation recommends using CLAUDE.md files to document common bash commands, core files, utility functions, code style guidelines, and testing instructions. AGENTS.md, now a multi-company standard, is another useful way of guiding agent actions in between context refreshes. These files act as external notes that let agents track progress across complex tasks while maintaining critical context that would otherwise be lost.

For tasks requiring extended work, both companies employ multi-agent architectures. According to Anthropic’s research documentation, its system uses an “orchestrator-worker pattern” in which a lead agent coordinates the process while delegating to specialized subagents that operate in parallel. When a user submits a query, the lead agent analyzes it, develops a strategy, and spawns subagents to explore different aspects simultaneously. The subagents act as intelligent filters, returning only relevant information rather than their full context to the lead agent.

The multi-agent approach burns through tokens rapidly. Anthropic’s documentation notes that agents typically use about four times more tokens than chatbot interactions, and multi-agent systems use about 15 times more tokens than chats. For economic viability, these systems require tasks where the value is high enough to justify the increased cost.

Best practices for humans

While using these agents is contentious in some programming circles, if you use one to code a project, knowing good software development practices helps to head off future problems. For example, it’s good to know about version control, making incremental backups, implementing one feature at a time, and testing it before moving on.

What people call “vibe coding”—creating AI-generated code without understanding what it’s doing—is clearly dangerous for production work. Shipping code you didn’t write yourself in a production environment is risky because it could introduce security issues or other bugs or begin gathering technical debt that could snowball over time.

Independent AI researcher Simon Willison recently argued that developers using coding agents still bear responsibility for proving their code works. “Almost anyone can prompt an LLM to generate a thousand-line patch and submit it for code review,” Willison wrote. “That’s no longer valuable. What’s valuable is contributing code that is proven to work.”

In fact, human planning is key. Claude Code’s best practices documentation recommends a specific workflow for complex problems: First, ask the agent to read relevant files and explicitly tell it not to write any code yet, then ask it to make a plan. Without these research and planning steps, the documentation warns, Claude’s outputs tend to jump straight to coding a solution.

Without planning, LLMs sometimes reach for quick solutions to satisfy a momentary objective that might break later if a project were expanded. So having some idea of what makes a good architecture for a modular program that can be expanded over time can help you guide the LLM to craft something more durable.

As mentioned above, these agents aren’t perfect, and some people prefer not to use them at all. A randomized controlled trial published by the nonprofit research organization METR in July 2025 found that experienced open-source developers actually took 19 percent longer to complete tasks when using AI tools, despite believing they were working faster. The study’s authors note several caveats: The developers were highly experienced with their codebases (averaging five years and 1,500 commits), the repositories were large and mature, and the models used (primarily Claude 3.5 and 3.7 Sonnet via Cursor) have since been superseded by more capable versions.

Whether newer models would produce different results remains an open question, but the study suggests that AI coding tools may not always provide universal speed-ups, particularly for developers who already know their codebases well.

Given these potential hazards, coding proof-of-concept demos and internal tools is probably the ideal use of coding agents right now. Since AI models have no actual agency (despite being called agents) and are not people who can be held accountable for mistakes, human oversight is key.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

How AI coding agents work—and what to remember if you use them Read More »

openai’s-new-chatgpt-image-generator-makes-faking-photos-easy

OpenAI’s new ChatGPT image generator makes faking photos easy

For most of photography’s roughly 200-year history, altering a photo convincingly required either a darkroom, some Photoshop expertise, or, at minimum, a steady hand with scissors and glue. On Tuesday, OpenAI released a tool that reduces the process to typing a sentence.

It’s not the first company to do so. While OpenAI had a conversational image-editing model in the works since GPT-4o in 2024, Google beat OpenAI to market in March with a public prototype, then refined it to a popular model called Nano Banana image model (and Nano Banana Pro). The enthusiastic response to Google’s image-editing model in the AI community got OpenAI’s attention.

OpenAI’s new GPT Image 1.5 is an AI image synthesis model that reportedly generates images up to four times faster than its predecessor and costs about 20 percent less through the API. The model rolled out to all ChatGPT users on Tuesday and represents another step toward making photorealistic image manipulation a casual process that requires no particular visual skills.

The

The “Galactic Queen of the Universe” added to a photo of a room with a sofa using GPT Image 1.5 in ChatGPT.

GPT Image 1.5 is notable because it’s a “native multimodal” image model, meaning image generation happens inside the same neural network that processes language prompts. (In contrast, DALL-E 3, an earlier OpenAI image generator previously built into ChatGPT, used a different technique called diffusion to generate images.)

This newer type of model, which we covered in more detail in March, treats images and text as the same kind of thing: chunks of data called “tokens” to be predicted, patterns to be completed. If you upload a photo of your dad and type “put him in a tuxedo at a wedding,” the model processes your words and the image pixels in a unified space, then outputs new pixels the same way it would output the next word in a sentence.

Using this technique, GPT Image 1.5 can more easily alter visual reality than earlier AI image models, changing someone’s pose or position, or rendering a scene from a slightly different angle, with varying degrees of success. It can also remove objects, change visual styles, adjust clothing, and refine specific areas while preserving facial likeness across successive edits. You can converse with the AI model about a photograph, refining and revising, the same way you might workshop a draft of an email in ChatGPT.

OpenAI’s new ChatGPT image generator makes faking photos easy Read More »

merriam-webster’s-word-of-the-year-delivers-a-dismissive-verdict-on-junk-ai-content

Merriam-Webster’s word of the year delivers a dismissive verdict on junk AI content

Like most tools, generative AI models can be misused. And when the misuse gets bad enough that a major dictionary notices, you know it’s become a cultural phenomenon.

On Sunday, Merriam-Webster announced that “slop” is its 2025 Word of the Year, reflecting how the term has become shorthand for the flood of low-quality AI-generated content that has spread across social media, search results, and the web at large. The dictionary defines slop as “digital content of low quality that is produced usually in quantity by means of artificial intelligence.”

“It’s such an illustrative word,” Merriam-Webster president Greg Barlow told the Associated Press. “It’s part of a transformative technology, AI, and it’s something that people have found fascinating, annoying, and a little bit ridiculous.”

To select its Word of the Year, Merriam-Webster’s editors review data on which words rose in search volume and usage, then reach consensus on which term best captures the year. Barlow told the AP that the spike in searches for “slop” reflects growing awareness among users that they are encountering fake or shoddy content online.

Dictionaries have been tracking AI’s impact on language for the past few years, with Cambridge having selected “hallucinate” as its 2023 word of the year due to the tendency of AI models to generate plausible-but-false information (long-time Ars readers will be happy to hear there’s another word term for that in the dictionary as well).

The trend extends to online culture in general, which is ripe with new coinages. This year, Oxford University Press chose “rage bait,” referring to content designed to provoke anger for engagement. Cambridge Dictionary selected “parasocial,” describing one-sided relationships between fans and celebrities or influencers.

The difference between the baby and the bathwater

As the AP points out, the word “slop” originally entered English in the 1700s to mean soft mud. By the 1800s, it had evolved to describe food waste fed to pigs, and eventually came to mean rubbish or products of little value. The new AI-related definition builds on that history of describing something unwanted and unpleasant.

Merriam-Webster’s word of the year delivers a dismissive verdict on junk AI content Read More »