intuitive machines

one-company-appears-to-be-thriving-as-part-of-nasa’s-return-to-the-moon

One company appears to be thriving as part of NASA’s return to the Moon

Talking to the Moon —

“This has really been a transformational year for us.”

The second Intuitive Machines lander is prepared for hot-fire testing this week.

Enlarge / The second Intuitive Machines lander is prepared for hot-fire testing this week.

Intuitive Machines

One of the miracles of the Apollo Moon landings is that they were televised, live, for all the world to see. This transparency diffused doubts about whether the lunar landings really happened and were watched by billions of people.

However, as remarkable a technical achievement as it was to broadcast from the Moon in 1969, the video was grainy and black and white. As NASA contemplates a return to the Moon as part of the Artemis program, it wants much higher resolution video and communications with its astronauts on the lunar surface.

To that end, NASA announced this week that it had awarded a contract to Houston-based Intuitive Machines for “lunar relay services.” Essentially this means Intuitive Machines will be responsible for building a small constellation of satellites around the Moon that will beam data back to Earth from the lunar surface.

“One of the requirements is a 4K data link,” said Steve Altemus, co-founder and chief executive of Intuitive Machines, in an interview. “That kind of high fidelity data only comes from a data relay with a larger antenna than can be delivered to the surface of the Moon.”

About the plan

This is part of NASA’s plan to build a more robust “Near Space Network” for communications within 1 million miles of Earth (the Moon is about 240,000 miles from Earth). Intuitive Machines’ contract is worth as much as $4.82 billion over the next decade, depending on the level of communication services that NASA chooses to purchase.

The space agency is also expected to award a ground-based component of this network for large dishes to receive signals from near space, taking some of this burden off the Deep Space Network. Altemus said Intuitive Machines has also bid on this ground component contract.

The Houston company, with its IM-1 mission, made a largely successful landing on the Moon in February. A second lunar landing mission, IM-2, is scheduled to take place in late December or January, a few months from now. Funded largely by NASA, the IM-2 mission will carry a small drill to the South Pole of the Moon to search for water ice in Shackleton Crater.

Then, approximately 15 months from now, the company is planning to launch another lander, IM-3. This mission is likely to carry the first data-relay satellite—each is intended to be about 500 kg, Altemus said, but the final design of the vehicles is still being finalized—to lunar orbit. Assuming this first satellite works well, the two following IM missions will each carry two relay satellites, making for a constellation of five spacecraft orbiting the Moon.

Two of the satellites will go into polar orbits and serve NASA’s Artemis needs at the South Pole, Altemus said. Two more are likely to go into halo orbits, and a fifth satellite will be placed into an equatorial orbit. This will provide full coverage of the Moon not just for communications, but also for position, navigation, and timing.

Intuitive Machines rising

A former deputy director of Johnson Space Center, Altemus founded Intuitive Machines in 2013 along with an investor, Kam Ghaffarian, and an aerospace engineer named Tim Crain. It hasn’t always been easy. Development of Intuitive Machines’ Nova C lander took years longer than anticipated; there were setbacks such as a propellant tank failure, and money was at times tight.

In part to address these financial difficulties, the company went public in 2023, at the tail end of the mania in which space companies were becoming publicly traded via special purpose acquisition companies, or SPACs. Many space companies that went public this way have struggled mightily, and Intuitive Machines has also faced similar pressures.

“It’s been a challenge,” Altemus said. “We went public in 2023, and navigating that was the story of last year, as well as getting to the launch pad.”

But then good things started happening. Despite some technical troubles, including the failure of its altimeter, the company’s first lander managed a soft touchdown on the Moon on its side. Even with this untinended orientation, the Intuitive Machines-1 mission still managed to complete the vast majority of its science objectives. In August, the company won its fourth task order from NASA—essentially a lunar delivery mission—under the Commercial Lunar Payload Services program.

And then the company won the massive data relay contract this week.

“This has really been a transformational year for us,” Altemus said. “The vision for the company is finally coming together.”

One company appears to be thriving as part of NASA’s return to the Moon Read More »

that-moment-when-you-land-on-the-moon,-break-a-leg,-and-are-about-to-topple-over

That moment when you land on the Moon, break a leg, and are about to topple over

Goodnight, Odie —

“We hit harder than expected and skidded along the way.”

A photo of <em>Odysseus</em> the moment before it gently toppled over.” src=”https://cdn.arstechnica.net/wp-content/uploads/2024/02/IM1-800×437.jpg”></img><figcaption>
<p><a data-height=Enlarge / A photo of Odysseus the moment before it gently toppled over.

Intuitive Machines

After six days and the public release of new images, engineers have finally pieced together the moments before, during, and after the Odysseus lander touched down on the Moon.

During a news conference on Wednesday, the chief executive of Intuitive Machines, Steve Altemus, described what his company has learned about what happened last Thursday evening as Odysseus made its powered descent down to the Moon.

From their control room in Houston, the mission operators watched with fraying nerves, as their range finders had failed. A last-minute effort to use altitude data from a NASA payload on board failed because the flight computer on board Odysseus could not ingest it in time. So the lander was, in essence, coming down to the Moon without any real-time altimetry data.

The last communication the operators received appeared to show that Odysseus had touched down on the Moon and was upright. But then, to their horror, all telemetry from the spacecraft ceased. The data on the flight controllers’ consoles in Houston froze. They feared the worst.

Skidding down to the Moon

About 10 minutes later, the lander sent a weak signal back. In that initial trickle of data, based on the lander’s inertial measurement unit, it appeared that Odysseus was partly on its side. But there were confusing signals.

On Wednesday, Altemus explained what the team has since pieced together. Because of the lack of altimetry data, Odysseus thought it was about 100 meters higher above the lunar surface than it actually was, so as it touched down it was traveling about three times faster than intended, about 3 meters per second. It was also moving laterally, with respect to the ground, at about 1 meter per second.

“We hit harder than expected and skidded along the way,” Altemus explained.

As it impacted and skidded, the spacecraft’s main engine was still firing. Then, just as the spacecraft touched down more firmly, there was a spike in the engine’s combustion chamber. This is consistent with the bell-shaped engine nozzle coming into contact with the lunar surface.

It is perhaps worth pausing a moment here to consider that this spacecraft, launched a week earlier, had just made an autonomous landing without knowing precisely where it was. But now it found itself on the Moon. Upon impact, one or more of the landing legs snapped as it came down hard. Then, at that very moment, with the engine still burning, an onboard camera snapped an image of the scene. Intuitive Machines published this photo on Wednesday. It’s spectacular.

“We sat upright, with the engine firing for a period of time,” Altemus said. “Then as it wound down, the vehicle just gently tipped over.”

Odysseus at rest on the lunar surface.” height=”1307″ src=”https://cdn.arstechnica.net/wp-content/uploads/2024/02/IM2-980×1307.jpg” width=”980″>

Enlarge / Odysseus at rest on the lunar surface.

Intuitive Machines

Based on the gravity of the Moon, Intuitive Machines and NASA calculated that it took about two seconds to tip over. The lander fell on its side, with a helium tank or radio shelf contacting the Moon. This protrusion, combined with the 12-degree slope of the terrain, means that Odysseus is now gently leaning on the lunar surface at about a 30-degree angle. On Tuesday, the spacecraft returned an image that verified these conclusions.

“We have that photo now to confirm that’s the orientation,” Altemus said.

Sleepy time

As Intuitive Machines has better understood the situation and the status of its vehicle, it has been able to download a torrent of data. NASA has gotten valuable information from all six of its payloads on board, said a project scientist for the space agency, Sue Lederer. As of Wednesday, NASA had been able to download about 50MB of data. The baseline for success was a single bit of data.

But time is running out as the Sun dips toward the horizon. Odysseus will run out of power as soon as Wednesday evening, entering the long lunar night. In about three weeks, as sunlight starts to hit the spacecraft’s solar panels again, Intuitive Machines will try to wake up the spacecraft. The odds are fairly long. The chemistry of its lithium-ion batteries doesn’t like cold, and temperatures will plummet to minus-280° Fahrenheit (minus-173° Celsius) in a few days. That may wreck the batteries or crack the electronics in the flight computer.

Yet hope remains eternal for a spacecraft its operators have taken to affectionately calling Odie. It has defied the odds so far. “He’s a scrappy little dude,” Lederer said. “I have confidence in Odie at this point.”

That moment when you land on the Moon, break a leg, and are about to topple over Read More »

a-little-us-company-makes-history-by-landing-on-the-moon

A little US company makes history by landing on the Moon

Odysseus passes over the near side of the Moon following lunar orbit insertion on February 21.

Enlarge / Odysseus passes over the near side of the Moon following lunar orbit insertion on February 21.

Intuitive Machines

For the first time in more than half a century, a US-built spacecraft has made a soft landing on the Moon.

There was high drama and plenty of intrigue on Thursday evening as Intuitive Machines attempted to land its Odysseus spacecraft in a small crater not all that far from the south pole of the Moon. About 20 minutes after touchdown, NASA declared success, but some questions remained about the health of the lander and its orientation. Why? Because while Odysseus was phoning home, its signal was weak.

But after what the spacecraft and its developer, Houston-based Intuitive Machines, went through earlier on Thursday, it was a miracle that Odysseus made it at all.

Losing your way

The landing attempt was delayed by about two hours after mission controllers had to send a hastily cobbled together, last-minute software patch up to the lander while it was still in orbit around the Moon. Patching your spacecraft’s software shortly before it makes its most critical move is just about the last thing a vehicle operator wants to do. But Intuitive Machines was desperate.

Earlier on Thursday, the company realized that its navigation lasers and cameras were not operational. These rangefinders are essential for two functions during landing: terrain-relative navigation and hazard-relative navigation. These two modes help the flight computer on Odysseus to determine precisely where it is during descent—by snapping lots of images and comparing them to known Moon topography—and to identify hazards below, such as boulders, in order to find a safe landing site.

Without these rangefinders, Odysseus was going to faceplant into the Moon. Fortunately, this mission carried a bunch of science payloads. As part of its commercial lunar program, NASA is paying about $118 million for the delivery of six scientific payloads to the lunar surface.

One of these payloads just happened to be the Navigation Doppler Lidar experiment, a 15-kg package that contains three small cameras. With this NDL payload, NASA sought to test out technologies that might be used to improve navigation systems in future landing attempts on the Moon.

The only chance Odysseus had was if it could somehow tap into two of the NDL experiment’s three cameras and use one for terrain-relative navigation and the other for hazard-relative navigation. So, some software was hastily written and shipped up to the lander. This was some true MacGyver stuff. But would it work?

A little US company makes history by landing on the Moon Read More »