GPT-4

microsoft-partners-with-openai-rival-mistral-for-ai-models,-drawing-eu-scrutiny

Microsoft partners with OpenAI-rival Mistral for AI models, drawing EU scrutiny

The European Approach —

15M euro investment comes as Microsoft hosts Mistral’s GPT-4 alternatives on Azure.

Velib bicycles are parked in front of the the U.S. computer and micro-computing company headquarters Microsoft on January 25, 2023 in Issy-les-Moulineaux, France.

On Monday, Microsoft announced plans to offer AI models from Mistral through its Azure cloud computing platform, which came in conjunction with a 15 million euro non-equity investment in the French firm, which is often seen as a European rival to OpenAI. Since then, the investment deal has faced scrutiny from European Union regulators.

Microsoft’s deal with Mistral, known for its large language models akin to OpenAI’s GPT-4 (which powers the subscription versions of ChatGPT), marks a notable expansion of its AI portfolio at a time when its well-known investment in California-based OpenAI has raised regulatory eyebrows. The new deal with Mistral drew particular attention from regulators because Microsoft’s investment could convert into equity (partial ownership of Mistral as a company) during Mistral’s next funding round.

The development has intensified ongoing investigations into Microsoft’s practices, particularly related to the tech giant’s dominance in the cloud computing sector. According to Reuters, EU lawmakers have voiced concerns that Mistral’s recent lobbying for looser AI regulations might have been influenced by its relationship with Microsoft. These apprehensions are compounded by the French government’s denial of prior knowledge of the deal, despite earlier lobbying for more lenient AI laws in Europe. The situation underscores the complex interplay between national interests, corporate influence, and regulatory oversight in the rapidly evolving AI landscape.

Avoiding American influence

The EU’s reaction to the Microsoft-Mistral deal reflects broader tensions over the role of Big Tech companies in shaping the future of AI and their potential to stifle competition. Calls for a thorough investigation into Microsoft and Mistral’s partnership have been echoed across the continent, according to Reuters, with some lawmakers accusing the firms of attempting to undermine European legislative efforts aimed at ensuring a fair and competitive digital market.

The controversy also touches on the broader debate about “European champions” in the tech industry. France, along with Germany and Italy, had advocated for regulatory exemptions to protect European startups. However, the Microsoft-Mistral deal has led some, like MEP Kim van Sparrentak, to question the motives behind these exemptions, suggesting they might have inadvertently favored American Big Tech interests.

“That story seems to have been a front for American-influenced Big Tech lobby,” said Sparrentak, as quoted by Reuters. Sparrentak has been a key architect of the EU’s AI Act, which has not yet been passed. “The Act almost collapsed under the guise of no rules for ‘European champions,’ and now look. European regulators have been played.”

MEP Alexandra Geese also expressed concerns over the concentration of money and power resulting from such partnerships, calling for an investigation. Max von Thun, Europe director at the Open Markets Institute, emphasized the urgency of investigating the partnership, criticizing Mistral’s reported attempts to influence the AI Act.

Also on Monday, amid the partnership news, Mistral announced Mistral Large, a new large language model (LLM) that Mistral says “ranks directly after GPT-4 based on standard benchmarks.” Mistral has previously released several open-weights AI models that have made news for their capabilities, but Mistral Large will be a closed model only available to customers through an API.

Microsoft partners with OpenAI-rival Mistral for AI models, drawing EU scrutiny Read More »

openai-accuses-nyt-of-hacking-chatgpt-to-set-up-copyright-suit

OpenAI accuses NYT of hacking ChatGPT to set up copyright suit

OpenAI accuses NYT of hacking ChatGPT to set up copyright suit

OpenAI is now boldly claiming that The New York Times “paid someone to hack OpenAI’s products” like ChatGPT to “set up” a lawsuit against the leading AI maker.

In a court filing Monday, OpenAI alleged that “100 examples in which some version of OpenAI’s GPT-4 model supposedly generated several paragraphs of Times content as outputs in response to user prompts” do not reflect how normal people use ChatGPT.

Instead, it allegedly took The Times “tens of thousands of attempts to generate” these supposedly “highly anomalous results” by “targeting and exploiting a bug” that OpenAI claims it is now “committed to addressing.”

According to OpenAI this activity amounts to “contrived attacks” by a “hired gun”—who allegedly hacked OpenAI models until they hallucinated fake NYT content or regurgitated training data to replicate NYT articles. NYT allegedly paid for these “attacks” to gather evidence to support The Times’ claims that OpenAI’s products imperil its journalism by allegedly regurgitating reporting and stealing The Times’ audiences.

“Contrary to the allegations in the complaint, however, ChatGPT is not in any way a substitute for a subscription to The New York Times,” OpenAI argued in a motion that seeks to dismiss the majority of The Times’ claims. “In the real world, people do not use ChatGPT or any other OpenAI product for that purpose. Nor could they. In the ordinary course, one cannot use ChatGPT to serve up Times articles at will.”

In the filing, OpenAI described The Times as enthusiastically reporting on its chatbot developments for years without raising any concerns about copyright infringement. OpenAI claimed that it disclosed that The Times’ articles were used to train its AI models in 2020, but The Times only cared after ChatGPT’s popularity exploded after its debut in 2022.

According to OpenAI, “It was only after this rapid adoption, along with reports of the value unlocked by these new technologies, that the Times claimed that OpenAI had ‘infringed its copyright[s]’ and reached out to demand ‘commercial terms.’ After months of discussions, the Times filed suit two days after Christmas, demanding ‘billions of dollars.'”

Ian Crosby, Susman Godfrey partner and lead counsel for The New York Times, told Ars that “what OpenAI bizarrely mischaracterizes as ‘hacking’ is simply using OpenAI’s products to look for evidence that they stole and reproduced The Times’s copyrighted works. And that is exactly what we found. In fact, the scale of OpenAI’s copying is much larger than the 100-plus examples set forth in the complaint.”

Crosby told Ars that OpenAI’s filing notably “doesn’t dispute—nor can they—that they copied millions of The Times’ works to build and power its commercial products without our permission.”

“Building new products is no excuse for violating copyright law, and that’s exactly what OpenAI has done on an unprecedented scale,” Crosby said.

OpenAI argued that the court should dismiss claims alleging direct copyright, contributory infringement, Digital Millennium Copyright Act violations, and misappropriation, all of which it describes as “legally infirm.” Some fail because they are time-barred—seeking damages on training data for OpenAI’s older models—OpenAI claimed. Others allegedly fail because they misunderstand fair use or are preempted by federal laws.

If OpenAI’s motion is granted, the case would be substantially narrowed.

But if the motion is not granted and The Times ultimately wins—and it might—OpenAI may be forced to wipe ChatGPT and start over.

“OpenAI, which has been secretive and has deliberately concealed how its products operate, is now asserting it’s too late to bring a claim for infringement or hold them accountable. We disagree,” Crosby told Ars. “It’s noteworthy that OpenAI doesn’t dispute that it copied Times works without permission within the statute of limitations to train its more recent and current models.”

OpenAI did not immediately respond to Ars’ request to comment.

OpenAI accuses NYT of hacking ChatGPT to set up copyright suit Read More »

openai-experiments-with-giving-chatgpt-a-long-term-conversation-memory

OpenAI experiments with giving ChatGPT a long-term conversation memory

“I remember…the Alamo” —

AI chatbot “memory” will recall facts from previous conversations when enabled.

A pixelated green illustration of a pair of hands looking through file records.

Enlarge / When ChatGPT looks things up, a pair of green pixelated hands look through paper records, much like this. Just kidding.

Benj Edwards / Getty Images

On Tuesday, OpenAI announced that it is experimenting with adding a form of long-term memory to ChatGPT that will allow it to remember details between conversations. You can ask ChatGPT to remember something, see what it remembers, and ask it to forget. Currently, it’s only available to a small number of ChatGPT users for testing.

So far, large language models have typically used two types of memory: one baked into the AI model during the training process (before deployment) and an in-context memory (the conversation history) that persists for the duration of your session. Usually, ChatGPT forgets what you have told it during a conversation once you start a new session.

Various projects have experimented with giving LLMs a memory that persists beyond a context window. (The context window is the hard limit on the number of tokens the LLM can process at once.) The techniques include dynamically managing context history, compressing previous history through summarization, links to vector databases that store information externally, or simply periodically injecting information into a system prompt (the instructions ChatGPT receives at the beginning of every chat).

A screenshot of ChatGPT memory controls provided by OpenAI.

Enlarge / A screenshot of ChatGPT memory controls provided by OpenAI.

OpenAI

OpenAI hasn’t explained which technique it uses here, but the implementation reminds us of Custom Instructions, a feature OpenAI introduced in July 2023 that lets users add custom additions to the ChatGPT system prompt to change its behavior.

Possible applications for the memory feature provided by OpenAI include explaining how you prefer your meeting notes to be formatted, telling it you run a coffee shop and having ChatGPT assume that’s what you’re talking about, keeping information about your toddler that loves jellyfish so it can generate relevant graphics, and remembering preferences for kindergarten lesson plan designs.

Also, OpenAI says that memories may help ChatGPT Enterprise and Team subscribers work together better since shared team memories could remember specific document formatting preferences or which programming frameworks your team uses. And OpenAI plans to bring memories to GPTs soon, with each GPT having its own siloed memory capabilities.

Memory control

Obviously, any tendency to remember information brings privacy implications. You should already know that sending information to OpenAI for processing on remote servers introduces the possibility of privacy leaks and that OpenAI trains AI models on user-provided information by default unless conversation history is disabled or you’re using an Enterprise or Team account.

Along those lines, OpenAI says that your saved memories are also subject to OpenAI training use unless you meet the criteria listed above. Still, the memory feature can be turned off completely. Additionally, the company says, “We’re taking steps to assess and mitigate biases, and steer ChatGPT away from proactively remembering sensitive information, like your health details—unless you explicitly ask it to.”

Users will also be able to control what ChatGPT remembers using a “Manage Memory” interface that lists memory items. “ChatGPT’s memories evolve with your interactions and aren’t linked to specific conversations,” OpenAI says. “Deleting a chat doesn’t erase its memories; you must delete the memory itself.”

ChatGPT’s memory features are not currently available to every ChatGPT account, so we have not experimented with it yet. Access during this testing period appears to be random among ChatGPT (free and paid) accounts for now. “We are rolling out to a small portion of ChatGPT free and Plus users this week to learn how useful it is,” OpenAI writes. “We will share plans for broader roll out soon.”

OpenAI experiments with giving ChatGPT a long-term conversation memory Read More »

chatgpt’s-new-@-mentions-bring-multiple-personalities-into-your-ai-convo

ChatGPT’s new @-mentions bring multiple personalities into your AI convo

team of rivals —

Bring different AI roles into the same chatbot conversation history.

Illustration of a man jugging at symbols.

Enlarge / With so many choices, selecting the perfect GPT can be confusing.

On Tuesday, OpenAI announced a new feature in ChatGPT that allows users to pull custom personalities called “GPTs” into any ChatGPT conversation with the @ symbol. It allows a level of quasi-teamwork within ChatGPT among expert roles that was previously impractical, making collaborating with a team of AI agents within OpenAI’s platform one step closer to reality.

You can now bring GPTs into any conversation in ChatGPT – simply type @ and select the GPT,” wrote OpenAI on the social media network X. “This allows you to add relevant GPTs with the full context of the conversation.”

OpenAI introduced GPTs in November as a way to create custom personalities or roles for ChatGPT to play. For example, users can build their own GPTs to focus on certain topics or certain skills. Paid ChatGPT subscribers can also freely download a host of GPTs developed by other ChatGPT users through the GPT Store.

Previously, if you wanted to share information between GPT profiles, you had to copy the text, select a new chat with the GPT, paste it, and explain the context of what the information means or what you want to do with it. Now, ChatGPT users can stay in the default ChatGPT window and bring in GPTs as needed without losing the history of the conversation.

For example, we created a “Wellness Guide” GPT that is crafted as an expert in human health conditions (of course, this being ChatGPT, always consult a human doctor if you’re having medical problems), and we created a “Canine Health Advisor” for dog-related health questions.

A screenshot of ChatGPT where we @-mentioned a human wellness advisor, then a dog advisor in the same conversation history.

Enlarge / A screenshot of ChatGPT where we @-mentioned a human wellness advisor, then a dog advisor in the same conversation history.

Benj Edwards

We started in a default ChatGPT chat, hit the @ symbol, then typed the first few letters of “Wellness” and selected it from a list. It filled out the rest. We asked a question about food poisoning in humans, and then we switched to the canine advisor in the same way with an @ symbol and asked about the dog.

Using this feature, you could alternatively consult, say, an “ad copywriter” GPT and an “editor” GPT—ask the copywriter to write some text, then rope in the editor GPT to check it, looking at it from a different angle. Different system prompts (the instructions that define a GPT’s personality) make for significant behavior differences.

We also tried swapping between GPT profiles that write software and others designed to consult on historical tech subjects. Interestingly, ChatGPT does not differentiate between GPTs as different personalities as you change. It will still say, “I did this earlier” when a different GPT is talking about a previous GPT’s output in the same conversation history. From its point of view, it’s just ChatGPT and not multiple agents.

From our vantage point, this feature seems to represent baby steps toward a future where GPTs, as independent agents, could work together as a team to fulfill more complex tasks directed by the user. Similar experiments have been done outside of OpenAI in the past (using API access), but OpenAI has so far resisted a more agentic model for ChatGPT. As we’ve seen (first with GPTs and now with this), OpenAI seems to be slowly angling toward that goal itself, but only time will tell if or when we see true agentic teamwork in a shipping service.

ChatGPT’s new @-mentions bring multiple personalities into your AI convo Read More »

openai-updates-chatgpt-4-model-with-potential-fix-for-ai-“laziness”-problem

OpenAI updates ChatGPT-4 model with potential fix for AI “laziness” problem

Break’s over —

Also, new GPT-3.5 Turbo model, lower API prices, and other model updates.

A lazy robot (a man with a box on his head) sits on the floor beside a couch.

On Thursday, OpenAI announced updates to the AI models that power its ChatGPT assistant. Amid less noteworthy updates, OpenAI tucked in a mention of a potential fix to a widely reported “laziness” problem seen in GPT-4 Turbo since its release in November. The company also announced a new GPT-3.5 Turbo model (with lower pricing), a new embedding model, an updated moderation model, and a new way to manage API usage.

“Today, we are releasing an updated GPT-4 Turbo preview model, gpt-4-0125-preview. This model completes tasks like code generation more thoroughly than the previous preview model and is intended to reduce cases of ‘laziness’ where the model doesn’t complete a task,” writes OpenAI in its blog post.

Since the launch of GPT-4 Turbo, a large number of ChatGPT users have reported that the ChatGPT-4 version of its AI assistant has been declining to do tasks (especially coding tasks) with the same exhaustive depth as it did in earlier versions of GPT-4. We’ve seen this behavior ourselves while experimenting with ChatGPT over time.

OpenAI has never offered an official explanation for this change in behavior, but OpenAI employees have previously acknowledged on social media that the problem is real, and the ChatGPT X account wrote in December, “We’ve heard all your feedback about GPT4 getting lazier! we haven’t updated the model since Nov 11th, and this certainly isn’t intentional. model behavior can be unpredictable, and we’re looking into fixing it.”

We reached out to OpenAI asking if it could provide an official explanation for the laziness issue but did not receive a response by press time.

New GPT-3.5 Turbo, other updates

Elsewhere in OpenAI’s blog update, the company announced a new version of GPT-3.5 Turbo (gpt-3.5-turbo-0125), which it says will offer “various improvements including higher accuracy at responding in requested formats and a fix for a bug which caused a text encoding issue for non-English language function calls.”

And the cost of GPT-3.5 Turbo through OpenAI’s API will decrease for the third time this year “to help our customers scale.” New input token prices are 50 percent less, at $0.0005 per 1,000 input tokens, and output prices are 25 percent less, at $0.0015 per 1,000 output tokens.

Lower token prices for GPT-3.5 Turbo will make operating third-party bots significantly less expensive, but the GPT-3.5 model is generally more likely to confabulate than GPT-4 Turbo. So we might see more scenarios like Quora’s bot telling people that eggs can melt (although the instance used a now-deprecated GPT-3 model called text-davinci-003). If GPT-4 Turbo API prices drop over time, some of those hallucination issues with third parties might eventually go away.

OpenAI also announced new embedding models, text-embedding-3-small and text-embedding-3-large, which convert content into numerical sequences, aiding in machine learning tasks like clustering and retrieval. And an updated moderation model, text-moderation-007, is part of the company’s API that “allows developers to identify potentially harmful text,” according to OpenAI.

Finally, OpenAI is rolling out improvements to its developer platform, introducing new tools for managing API keys and a new dashboard for tracking API usage. Developers can now assign permissions to API keys from the API keys page, helping to clamp down on misuse of API keys (if they get into the wrong hands) that can potentially cost developers lots of money. The API dashboard allows devs to “view usage on a per feature, team, product, or project level, simply by having separate API keys for each.”

As the media world seemingly swirls around the company with controversies and think pieces about the implications of its tech, releases like these show that the dev teams at OpenAI are still rolling along as usual with updates at a fairly regular pace. Despite the company almost completely falling apart late last year, it seems that, under the hood, it’s business as usual for OpenAI.

OpenAI updates ChatGPT-4 model with potential fix for AI “laziness” problem Read More »

everybody’s-talking-about-mistral,-an-upstart-french-challenger-to-openai

Everybody’s talking about Mistral, an upstart French challenger to OpenAI

A challenger appears —

“Mixture of experts” Mixtral 8x7B helps open-weights AI punch above its weight class.

An illustrated robot holding a French flag.

Enlarge / An illustration of a robot holding a French flag, figuratively reflecting the rise of AI in France due to Mistral. It’s hard to draw a picture of an LLM, so a robot will have to do.

On Monday, Mistral AI announced a new AI language model called Mixtral 8x7B, a “mixture of experts” (MoE) model with open weights that reportedly truly matches OpenAI’s GPT-3.5 in performance—an achievement that has been claimed by others in the past but is being taken seriously by AI heavyweights such as OpenAI’s Andrej Karpathy and Jim Fan. That means we’re closer to having a ChatGPT-3.5-level AI assistant that can run freely and locally on our devices, given the right implementation.

Mistral, based in Paris and founded by Arthur Mensch, Guillaume Lample, and Timothée Lacroix, has seen a rapid rise in the AI space recently. It has been quickly raising venture capital to become a sort of French anti-OpenAI, championing smaller models with eye-catching performance. Most notably, Mistral’s models run locally with open weights that can be downloaded and used with fewer restrictions than closed AI models from OpenAI, Anthropic, or Google. (In this context “weights” are the computer files that represent a trained neural network.)

Mixtral 8x7B can process a 32K token context window and works in French, German, Spanish, Italian, and English. It works much like ChatGPT in that it can assist with compositional tasks, analyze data, troubleshoot software, and write programs. Mistral claims that it outperforms Meta’s much larger LLaMA 2 70B (70 billion parameter) large language model and that it matches or exceeds OpenAI’s GPT-3.5 on certain benchmarks, as seen in the chart below.

A chart of Mixtral 8x7B performance vs. LLaMA 2 70B and GPT-3.5, provided by Mistral.

Enlarge / A chart of Mixtral 8x7B performance vs. LLaMA 2 70B and GPT-3.5, provided by Mistral.

Mistral

The speed at which open-weights AI models have caught up with OpenAI’s top offering a year ago has taken many by surprise. Pietro Schirano, the founder of EverArt, wrote on X, “Just incredible. I am running Mistral 8x7B instruct at 27 tokens per second, completely locally thanks to @LMStudioAI. A model that scores better than GPT-3.5, locally. Imagine where we will be 1 year from now.”

LexicaArt founder Sharif Shameem tweeted, “The Mixtral MoE model genuinely feels like an inflection point — a true GPT-3.5 level model that can run at 30 tokens/sec on an M1. Imagine all the products now possible when inference is 100% free and your data stays on your device.” To which Andrej Karpathy replied, “Agree. It feels like the capability / reasoning power has made major strides, lagging behind is more the UI/UX of the whole thing, maybe some tool use finetuning, maybe some RAG databases, etc.”

Mixture of experts

So what does mixture of experts mean? As this excellent Hugging Face guide explains, it refers to a machine-learning model architecture where a gate network routes input data to different specialized neural network components, known as “experts,” for processing. The advantage of this is that it enables more efficient and scalable model training and inference, as only a subset of experts are activated for each input, reducing the computational load compared to monolithic models with equivalent parameter counts.

In layperson’s terms, a MoE is like having a team of specialized workers (the “experts”) in a factory, where a smart system (the “gate network”) decides which worker is best suited to handle each specific task. This setup makes the whole process more efficient and faster, as each task is done by an expert in that area, and not every worker needs to be involved in every task, unlike in a traditional factory where every worker might have to do a bit of everything.

OpenAI has been rumored to use a MoE system with GPT-4, accounting for some of its performance. In the case of Mixtral 8x7B, the name implies that the model is a mixture of eight 7 billion-parameter neural networks, but as Karpathy pointed out in a tweet, the name is slightly misleading because, “it is not all 7B params that are being 8x’d, only the FeedForward blocks in the Transformer are 8x’d, everything else stays the same. Hence also why total number of params is not 56B but only 46.7B.”

Mixtral is not the first “open” mixture of experts model, but it is notable for its relatively small size in parameter count and performance. It’s out now, available on Hugging Face and BitTorrent under the Apache 2.0 license. People have been running it locally using an app called LM Studio. Also, Mistral began offering beta access to an API for three levels of Mistral models on Monday.

Everybody’s talking about Mistral, an upstart French challenger to OpenAI Read More »

as-chatgpt-gets-“lazy,”-people-test-“winter-break-hypothesis”-as-the-cause

As ChatGPT gets “lazy,” people test “winter break hypothesis” as the cause

only 14 shopping days ’til Christmas —

Unproven hypothesis seeks to explain ChatGPT’s seemingly new reluctance to do hard work.

A hand moving a wooden calendar piece that says

In late November, some ChatGPT users began to notice that ChatGPT-4 was becoming more “lazy,” reportedly refusing to do some tasks or returning simplified results. Since then, OpenAI has admitted that it’s an issue, but the company isn’t sure why. The answer may be what some are calling “winter break hypothesis.” While unproven, the fact that AI researchers are taking it seriously shows how weird the world of AI language models has become.

“We’ve heard all your feedback about GPT4 getting lazier!” tweeted the official ChatGPT account on Thursday. “We haven’t updated the model since Nov 11th, and this certainly isn’t intentional. model behavior can be unpredictable, and we’re looking into fixing it.”

On Friday, an X account named Martian openly wondered if LLMs might simulate seasonal depression. Later, Mike Swoopskee tweeted, “What if it learned from its training data that people usually slow down in December and put bigger projects off until the new year, and that’s why it’s been more lazy lately?”

Since the system prompt for ChatGPT feeds the bot the current date, people noted, some began to think there may be something to the idea. Why entertain such a weird supposition? Because research has shown that large language models like GPT-4, which powers the paid version of ChatGPT, respond to human-style encouragement, such as telling a bot to “take a deep breath” before doing a math problem. People have also less formally experimented with telling an LLM that it will receive a tip for doing the work, or if an AI model gets lazy, telling the bot that you have no fingers seems to help lengthen outputs.

  • “Winter break hypothesis” test result screenshots from Rob Lynch on X.

  • “Winter break hypothesis” test result screenshots from Rob Lynch on X.

  • “Winter break hypothesis” test result screenshots from Rob Lynch on X.

On Monday, a developer named Rob Lynch announced on X that he had tested GPT-4 Turbo through the API over the weekend and found shorter completions when the model is fed a December date (4,086 characters) than when fed a May date (4,298 characters). Lynch claimed the results were statistically significant. However, a reply from AI researcher Ian Arawjo said that he could not reproduce the results with statistical significance. (It’s worth noting that reproducing results with LLM can be difficult because of random elements at play that vary outputs over time, so people sample a large number of responses.)

As of this writing, others are busy running tests, and the results are inconclusive. This episode is a window into the quickly unfolding world of LLMs and a peek into an exploration into largely unknown computer science territory. As AI researcher Geoffrey Litt commented in a tweet, “funniest theory ever, I hope this is the actual explanation. Whether or not it’s real, [I] love that it’s hard to rule out.”

A history of laziness

One of the reports that started the recent trend of noting that ChatGPT is getting “lazy” came on November 24 via Reddit, the day after Thanksgiving in the US. There, a user wrote that they asked ChatGPT to fill out a CSV file with multiple entries, but ChatGPT refused, saying, “Due to the extensive nature of the data, the full extraction of all products would be quite lengthy. However, I can provide the file with this single entry as a template, and you can fill in the rest of the data as needed.”

On December 1, OpenAI employee Will Depue confirmed in an X post that OpenAI was aware of reports about laziness and was working on a potential fix. “Not saying we don’t have problems with over-refusals (we definitely do) or other weird things (working on fixing a recent laziness issue), but that’s a product of the iterative process of serving and trying to support sooo many use cases at once,” he wrote.

It’s also possible that ChatGPT was always “lazy” with some responses (since the responses vary randomly), and the recent trend made everyone take note of the instances in which they are happening. For example, in June, someone complained of GPT-4 being lazy on Reddit. (Maybe ChatGPT was on summer vacation?)

Also, people have been complaining about GPT-4 losing capability since it was released. Those claims have been controversial and difficult to verify, making them highly subjective.

As Ethan Mollick joked on X, as people discover new tricks to improve LLM outputs, prompting for large language models is getting weirder and weirder: “It is May. You are very capable. I have no hands, so do everything. Many people will die if this is not done well. You really can do this and are awesome. Take a deep breathe and think this through. My career depends on it. Think step by step.”

As ChatGPT gets “lazy,” people test “winter break hypothesis” as the cause Read More »

elon-musk’s-new-ai-bot,-grok,-causes-stir-by-citing-openai-usage-policy

Elon Musk’s new AI bot, Grok, causes stir by citing OpenAI usage policy

You are what you eat —

Some experts think xAI used OpenAI model outputs to fine-tune Grok.

Illustration of a broken robot exchanging internal gears.

Grok, the AI language model created by Elon Musk’s xAI, went into wide release last week, and people have begun spotting glitches. On Friday, security tester Jax Winterbourne tweeted a screenshot of Grok denying a query with the statement, “I’m afraid I cannot fulfill that request, as it goes against OpenAI’s use case policy.” That made ears perk up online since Grok isn’t made by OpenAI—the company responsible for ChatGPT, which Grok is positioned to compete with.

Interestingly, xAI representatives did not deny that this behavior occurs with its AI model. In reply, xAI employee Igor Babuschkin wrote, “The issue here is that the web is full of ChatGPT outputs, so we accidentally picked up some of them when we trained Grok on a large amount of web data. This was a huge surprise to us when we first noticed it. For what it’s worth, the issue is very rare and now that we’re aware of it we’ll make sure that future versions of Grok don’t have this problem. Don’t worry, no OpenAI code was used to make Grok.”

In reply to Babuschkin, Winterbourne wrote, “Thanks for the response. I will say it’s not very rare, and occurs quite frequently when involving code creation. Nonetheless, I’ll let people who specialize in LLM and AI weigh in on this further. I’m merely an observer.”

A screenshot of Jax Winterbourne's X post about Grok talking like it's an OpenAI product.

Enlarge / A screenshot of Jax Winterbourne’s X post about Grok talking like it’s an OpenAI product.

Jason Winterbourne

However, Babuschkin’s explanation seems unlikely to some experts because large language models typically do not spit out their training data verbatim, which might be expected if Grok picked up some stray mentions of OpenAI policies here or there on the web. Instead, the concept of denying an output based on OpenAI policies would probably need to be trained into it specifically. And there’s a very good reason why this might have happened: Grok was fine-tuned on output data from OpenAI language models.

“I’m a bit suspicious of the claim that Grok picked this up just because the Internet is full of ChatGPT content,” said AI researcher Simon Willison in an interview with Ars Technica. “I’ve seen plenty of open weights models on Hugging Face that exhibit the same behavior—behave as if they were ChatGPT—but inevitably, those have been fine-tuned on datasets that were generated using the OpenAI APIs, or scraped from ChatGPT itself. I think it’s more likely that Grok was instruction-tuned on datasets that included ChatGPT output than it was a complete accident based on web data.”

As large language models (LLMs) from OpenAI have become more capable, it has been increasingly common for some AI projects (especially open source ones) to fine-tune an AI model output using synthetic data—training data generated by other language models. Fine-tuning adjusts the behavior of an AI model toward a specific purpose, such as getting better at coding, after an initial training run. For example, in March, a group of researchers from Stanford University made waves with Alpaca, a version of Meta’s LLaMA 7B model that was fine-tuned for instruction-following using outputs from OpenAI’s GPT-3 model called text-davinci-003.

On the web you can easily find several open source datasets collected by researchers from ChatGPT outputs, and it’s possible that xAI used one of these to fine-tune Grok for some specific goal, such as improving instruction-following ability. The practice is so common that there’s even a WikiHow article titled, “How to Use ChatGPT to Create a Dataset.”

It’s one of the ways AI tools can be used to build more complex AI tools in the future, much like how people began to use microcomputers to design more complex microprocessors than pen-and-paper drafting would allow. However, in the future, xAI might be able to avoid this kind of scenario by more carefully filtering its training data.

Even though borrowing outputs from others might be common in the machine-learning community (despite it usually being against terms of service), the episode particularly fanned the flames of the rivalry between OpenAI and X that extends back to Elon Musk’s criticism of OpenAI in the past. As news spread of Grok possibly borrowing from OpenAI, the official ChatGPT account wrote, “we have a lot in common” and quoted Winterbourne’s X post. As a comeback, Musk wrote, “Well, son, since you scraped all the data from this platform for your training, you ought to know.”

Elon Musk’s new AI bot, Grok, causes stir by citing OpenAI usage policy Read More »