CPU

man-sick-of-crashes-sues-intel-for-allegedly-hiding-cpu-defects

Man sick of crashes sues Intel for allegedly hiding CPU defects

“Had Intel disclosed the defect, including through advertising, press releases, the Product packaging, or the initial setup process, Plaintiff and class members would not have purchased a Product, or would have paid substantially less for it,” Vanvalkenburgh’s complaint said.

According to Tom’s Hardware, “Intel’s 13th Generation Raptor Lake processors have a return rate four times higher than that of the previous generation,” and “14th Generation Raptor Lake Refresh chips also have return rates thrice as high as the 12th Generation Alder Lake processors.” But instead of alerting the public to the defects, Vanvalkenburgh’s complaint alleged, Intel continued touting the processors as providing the ultimate desktop experience for serious gamers and people with “the most demanding of multitasking workloads” seeking speed, efficiency, and reliability.

Vanvalkenburgh alleged that Intel misled customers because Intel wanted to protect its brand and seek unjust enrichment. According to his complaint, Intel knows “consumers are willing to pay more for a reliable processor that runs stably, without failing or crashing frequently.” By failing to alert customers to known defects, Intel’s alleged deceptions increased demand for its CPUs, spiking sales into the millions, while its customers paid hundreds for processors and allegedly “sustained an economic injury.”

“Reasonable consumers do not expect that the Products will crash and fail at high rates, or that running the Products will damage the Products themselves,” Vanvalkenburgh’s complaint said, noting that a patch Intel later provided failed to fix the issue.

Vanvalkenburgh is hoping a jury will agree that Intel deceived customers and order an injunction preventing any future misconduct like misleading advertising or failure to disclose defective products.

If the class action is certified, Intel could owe extensive damages, potentially paying hundreds of millions in a loss. Because Vanvalkenburgh alleged that “Intel’s fraudulent concealment was malicious, oppressive, deliberate, intended to defraud” him, he’s seeking “an assessment of punitive damages in an amount sufficient to deter such conduct.” That’s on top of requests for maximum statutory damages for allegedly unfair and deceptive practices and disgorgement for alleged unjust enrichment.

Man sick of crashes sues Intel for allegedly hiding CPU defects Read More »

almost-unfixable-“sinkclose”-bug-affects-hundreds-of-millions-of-amd-chips

Almost unfixable “Sinkclose” bug affects hundreds of millions of AMD chips

Deep insecurity —

Worse-case scenario: “You basically have to throw your computer away.”

Security flaws in your computer’s firmware, the deep-seated code that loads first when you turn the machine on and controls even how its operating system boots up, have long been a target for hackers looking for a stealthy foothold. But only rarely does that kind of vulnerability appear not in the firmware of any particular computer maker, but in the chips found across hundreds of millions of PCs and servers. Now security researchers have found one such flaw that has persisted in AMD processors for decades, and that would allow malware to burrow deep enough into a computer’s memory that, in many cases, it may be easier to discard a machine than to disinfect it.

At the Defcon hacker conference, Enrique Nissim and Krzysztof Okupski, researchers from the security firm IOActive, plan to present a vulnerability in AMD chips they’re calling Sinkclose. The flaw would allow hackers to run their own code in one of the most privileged modes of an AMD processor, known as System Management Mode, designed to be reserved only for a specific, protected portion of its firmware. IOActive’s researchers warn that it affects virtually all AMD chips dating back to 2006, or possibly even earlier.

Nissim and Okupski note that exploiting the bug would require hackers to already have obtained relatively deep access to an AMD-based PC or server, but that the Sinkclose flaw would then allow them to plant their malicious code far deeper still. In fact, for any machine with one of the vulnerable AMD chips, the IOActive researchers warn that an attacker could infect the computer with malware known as a “bootkit” that evades antivirus tools and is potentially invisible to the operating system, while offering a hacker full access to tamper with the machine and surveil its activity. For systems with certain faulty configurations in how a computer maker implemented AMD’s security feature known as Platform Secure Boot—which the researchers warn encompasses the large majority of the systems they tested—a malware infection installed via Sinkclose could be harder yet to detect or remediate, they say, surviving even a reinstallation of the operating system.

“Imagine nation-state hackers or whoever wants to persist on your system. Even if you wipe your drive clean, it’s still going to be there,” says Okupski. “It’s going to be nearly undetectable and nearly unpatchable.” Only opening a computer’s case, physically connecting directly to a certain portion of its memory chips with a hardware-based programming tool known as SPI Flash programmer and meticulously scouring the memory would allow the malware to be removed, Okupski says.

Nissim sums up that worst-case scenario in more practical terms: “You basically have to throw your computer away.”

In a statement shared with WIRED, AMD acknowledged IOActive’s findings, thanked the researchers for their work, and noted that it has “released mitigation options for its AMD EPYC datacenter products and AMD Ryzen PC products, with mitigations for AMD embedded products coming soon.” (The term “embedded,” in this case, refers to AMD chips found in systems such as industrial devices and cars.) For its EPYC processors designed for use in data-center servers, specifically, the company noted that it released patches earlier this year. AMD declined to answer questions in advance about how it intends to fix the Sinkclose vulnerability, or for exactly which devices and when, but it pointed to a full list of affected products that can be found on its website’s security bulletin page.

Almost unfixable “Sinkclose” bug affects hundreds of millions of AMD chips Read More »

intel-is-investigating-game-crashes-on-top-end-core-i9-desktop-cpus

Intel is investigating game crashes on top-end Core i9 desktop CPUs

i’m giving her all she’s got —

Crashes may be related to CPUs running above their specified power limits.

Intel's high-end Core i9-13900K and 14900K are reportedly having crashing problems in some games.

Enlarge / Intel’s high-end Core i9-13900K and 14900K are reportedly having crashing problems in some games.

Andrew Cunningham

If you own a recent high-end Intel desktop CPU and you’ve been running into weird game crashes lately, you’re not alone.

Scattered reports from Core i9-13900K and i9-14900K users over the last couple of months have pointed to processor power usage as a possible source of crashes even in relatively undemanding games like Fortnite. Games like Hogwarts Legacy, Remnant 2, Alan Wake 2, Horizon: Zero Dawn, The Last of Us Part 1, and Outpost: Infinity Siege have also reportedly been affected; the problem primarily seems to affect titles made with Epic’s Unreal Engine. Intel said in a statement to ZDNet Korea (via The Verge) that it’s looking into the problems, escalating it from an “isolated issue” to something that may be more widespread and could require a more systemic fix.

Related CPUs like the i9-13900KF, i9-14900KF, i9-13900KS, and i9-14900KS may be affected, too, since they’re all the same basic silicon. Some user reports have also indicated that the i7-13700K and i7-14700K series may also be affected.

“Intel is aware of reports regarding Intel Core 13th and 14th Gen unlocked desktop processors experiencing issues with certain workloads,” an Intel spokesperson told Ars. “We’re engaged with our partners and are conducting analysis of the reported issues.”

While Intel hasn’t indicated what it thinks could be causing the issue, support documents from Epic Games and other developers have suggested that the processors’ power settings are to blame, recommending that users change their BIOS settings or manually restrict their processors’ speed with tools like Intel’s Extreme Tuning Utility (XTU). Most enthusiast motherboards will set the power limits on Intel’s processors to be essentially infinite, squeezing out a bit more performance (especially for i7 and i9 chips) at the expense of increased power use and heat.

Epic suggests using a BIOS power setting called “Intel Fail Safe” on Asus, MSI, and Gigabyte motherboards—its name makes it sound like some kind of low-power safe mode, but it’s most likely just setting the processors’ power limits to Intel’s specified defaults. This could result in somewhat reduced performance, particularly when all CPU cores are active at the same time. But we and other reviewers have seen sharply diminishing returns when letting these chips use more power. This can even be a problem with Intel’s stock settings—the recently announced i9-14900KS can use as much as 31 percent more power than the standard i9-14900K while delivering just 1 or 2 percent faster performance.

If power limits are to blame, the good news is that users can adjust these in the short term and that motherboard makers could fix the problem in the long run by tweaking their default settings in future BIOS updates.

Updated April 9, 2024, at 2: 12 pm to add Intel spokesperson statement.

Intel is investigating game crashes on top-end Core i9 desktop CPUs Read More »

ryzen-8000g-review:-an-integrated-gpu-that-can-beat-a-graphics-card,-for-a-price

Ryzen 8000G review: An integrated GPU that can beat a graphics card, for a price

The most interesting thing about AMD's Ryzen 7 8700G CPU is the Radeon 780M GPU that's attached to it.

Enlarge / The most interesting thing about AMD’s Ryzen 7 8700G CPU is the Radeon 780M GPU that’s attached to it.

Andrew Cunningham

Put me on the short list of people who can get excited about the humble, much-derided integrated GPU.

Yes, most of them are afterthoughts, designed for office desktops and laptops that will spend most of their lives rendering 2D images to a single monitor. But when integrated graphics push forward, it can open up possibilities for people who want to play games but can only afford a cheap desktop (or who have to make do with whatever their parents will pay for, which was the big limiter on my PC gaming experience as a kid).

That, plus an unrelated but accordant interest in building small mini-ITX-based desktops, has kept me interested in AMD’s G-series Ryzen desktop chips (which it sometimes calls “APUs,” to distinguish them from the Ryzen CPUs). And the Ryzen 8000G chips are a big upgrade from the 5000G series that immediately preceded them (this makes sense, because as we all know the number 8 immediately follows the number 5).

We’re jumping up an entire processor socket, one CPU architecture, three GPU architectures, and up to a new generation of much faster memory; especially for graphics, it’s a pretty dramatic leap. It’s an integrated GPU that can credibly beat the lowest tier of currently available graphics cards, replacing a $100–$200 part with something a lot more energy-efficient.

As with so many current-gen Ryzen chips, still-elevated pricing for the socket AM5 platform and the DDR5 memory it requires limit the 8000G series’ appeal, at least for now.

From laptop to desktop

AMD's first Ryzen 8000 desktop processors are what the company used to call

Enlarge / AMD’s first Ryzen 8000 desktop processors are what the company used to call “APUs,” a combination of a fast integrated GPU and a reasonably capable CPU.

AMD

The 8000G chips use the same Zen 4 CPU architecture as the Ryzen 7000 desktop chips, but the way the rest of the chip is put together is pretty different. Like past APUs, these are actually laptop silicon (in this case, the Ryzen 7040/8040 series, codenamed Phoenix and Phoenix 2) repackaged for a desktop processor socket.

Generally, the real-world impact of this is pretty mild; in most ways, the 8700G and 8600G will perform a lot like any other Zen 4 CPU with the same number of cores (our benchmarks mostly bear this out). But to the extent that there is a difference, the Phoenix silicon will consistently perform just a little worse, because it has half as much L3 cache. AMD’s Ryzen X3D chips revolve around the performance benefits of tons of cache, so you can see why having less would be detrimental.

The other missing feature from the Ryzen 7000 desktop chips is PCI Express 5.0 support—Ryzen 8000G tops out at PCIe 4.0. This might, maybe, one day in the distant future, eventually lead to some kind of user-observable performance difference. Some recent GPUs use an 8-lane PCIe 4.0 interface instead of the typical 16 lanes, which limits performance slightly. But PCIe 5.0 SSDs remain rare (and PCIe 4.0 peripherals remain extremely fast), so it probably shouldn’t top your list of concerns.

The Ryzen 5 8500G is a lot different from the 8700G and 8600G, since some of the CPU cores in the Phoenix 2 chips are based on Zen 4c rather than Zen 4. These cores have all the same capabilities as regular Zen 4 ones—unlike Intel’s E-cores—but they’re optimized to take up less space rather than hit high clock speeds. They were initially made for servers, where cramming lots of cores into a small amount of space is more important than having a smaller number of faster cores, but AMD is also using them to make some of its low-end consumer chips physically smaller and presumably cheaper to produce. AMD didn’t send us a Ryzen 8500G for review, so we can’t see exactly how Phoenix 2 stacks up in a desktop.

The 8700G and 8600G chips are also the only ones that come with AMD’s “Ryzen AI” feature, the brand AMD is using to refer to processors with a neural processing unit (NPU) included. Sort of like GPUs or video encoding/decoding blocks, these are additional bits built into the chip that handle things that CPUs can’t do very efficiently—in this case, machine learning and AI workloads.

Most PCs still don’t have NPUs, and as such they are only barely used in current versions of Windows (Windows 11 offers some webcam effects that will take advantage of NPU acceleration, but for now that’s mostly it). But expect this to change as they become more common and as more AI-accelerated text, image, and video creating and editing capabilities are built into modern operating systems.

The last major difference is the GPU. Ryzen 7000 includes a pair of RDNA2 compute units that perform more or less like Intel’s desktop integrated graphics: good enough to render your desktop on a monitor or two, but not much else. The Ryzen 8000G chips include up to 12 RDNA3 CUs, which—as we’ve already seen in laptops and portable gaming systems like the Asus ROG Ally that use the same silicon—is enough to run most games, if just barely in some cases.

That gives AMD’s desktop APUs a unique niche. You can use them in cases where you can’t afford a dedicated GPU—for a time during the big graphics card shortage in 2020 and 2021, a Ryzen 5700G was actually one of the only ways to build a budget gaming PC. Or you can use them in cases where a dedicated GPU won’t fit, like super-small mini ITX-based desktops.

The main argument that AMD makes is the affordability one, comparing the price of a Ryzen 8700G to the price of an Intel Core i5-13400F and a GeForce GTX 1650 GPU (this card is nearly five years old, but it remains Nvidia’s newest and best GPU available for less than $200).

Let’s check on performance first, and then we’ll revisit pricing.

Ryzen 8000G review: An integrated GPU that can beat a graphics card, for a price Read More »