climate change

supreme-court-lets-hawaii-sue-oil-companies-over-climate-change-effects

Supreme Court lets Hawaii sue oil companies over climate change effects

On Monday, the Supreme Court declined to decide whether to block lawsuits that Honolulu filed to seek billions in damages from oil and gas companies over allegedly deceptive marketing campaigns that hid the effects of climate change.

Now those lawsuits can proceed, surely frustrating the fossil fuel industry, which felt that SCOTUS should have weighed in on this key “recurring question of extraordinary importance to the energy industry” raised in lawsuits seeking similarly high damages in several states, CBS News reported.

Defendants Sunoco and Shell, along with 15 other energy companies, had asked the court to intervene and stop the Hawaii lawsuits from proceeding. They had hoped to move the cases out of Hawaii state courts by arguing that interstate pollution is governed by federal law and the Clean Air Act.

The oil and gas companies continue to argue that greenhouse gas emissions “flow from billions of daily choices, over more than a century, by governments, companies, and individuals about what types of fuels to use, and how to use them.” Because of this, the companies believe Honolulu was wrong to demand damages based on the “cumulative effect of worldwide emissions leading to global climate change.”

“In these cases, state and local governments are attempting to assert control over the nation’s energy policies by holding energy companies liable for worldwide conduct in ways that starkly conflict with the policies and priorities of the federal government,” oil and gas companies unsuccessfully argued in their attempt to persuade SCOTUS to grant review. “That flouts this court’s precedents and basic principles of federalism, and the court should put a stop to it.”

Supreme Court lets Hawaii sue oil companies over climate change effects Read More »

everyone-agrees:-2024-the-hottest-year-since-the-thermometer-was-invented

Everyone agrees: 2024 the hottest year since the thermometer was invented


An exceptionally hot outlier, 2024 means the streak of hottest years goes to 11.

With very few and very small exceptions, 2024 was unusually hot across the globe. Credit: Copernicus

Over the last 24 hours or so, the major organizations that keep track of global temperatures have released figures for 2024, and all of them agree: 2024 was the warmest year yet recorded, joining 2023 as an unusual outlier in terms of how rapidly things heated up. At least two of the organizations, the European Union’s Copernicus and Berkeley Earth, place the year at about 1.6° C above pre-industrial temperatures, marking the first time that the Paris Agreement goal of limiting warming to 1.5° has been exceeded.

NASA and the National Oceanic and Atmospheric Administration both place the mark at slightly below 1.5° C over pre-industrial temperatures (as defined by the 1850–1900 average). However, that difference largely reflects the uncertainties in measuring temperatures during that period rather than disagreement over 2024.

It’s hot everywhere

2023 had set a temperature record largely due to a switch to El Niño conditions midway through the year, which made the second half of the year exceptionally hot. It takes some time for that heat to make its way from the ocean into the atmosphere, so the streak of warm months continued into 2024, even as the Pacific switched into its cooler La Niña mode.

While El Niños are regular events, this one had an outsized impact because it was accompanied by unusually warm temperatures outside the Pacific, including record high temperatures in the Atlantic and unusual warmth in the Indian Ocean. Land temperatures reflect this widespread warmth, with elevated temperatures on all continents. Berkeley Earth estimates that 104 countries registered 2024 as the warmest on record, meaning 3.3 billion people felt the hottest average temperatures they had ever experienced.

Different organizations use slightly different methods to calculate the global temperature and have different baselines. For example, Copernicus puts 2024 at 0.72° C above a baseline that will be familiar to many people since they were alive for it: 1991 to 2000. In contrast, NASA and NOAA use a baseline that covers the entirety of the last century, which is substantially cooler overall. Relative to that baseline, 2024 is 1.29° C warmer.

Lining up the baselines shows that these different services largely agree with each other, with most of the differences due to uncertainties in the measurements, with the rest accounted for by slightly different methods of handling things like areas with sparse data.

Describing the details of 2024, however, doesn’t really capture just how exceptional the warmth of the last two years has been. Starting in around 1970, there’s been a roughly linear increase in temperature driven by greenhouse gas emissions, despite many individual years that were warmer or cooler than the trend. The last two years have been extreme outliers from this trend. The last time there was a single comparable year to 2024 was back in the 1940s. The last time there were two consecutive years like this was in 1878.

A graph showing a curve that increases smoothly from left to right, with individual points on the curve hosting red and blue lines above and below. The red line at 2024 is larger than any since 1978.

Relative to the five-year temperature average, 2024 is an exceptionally large excursion. Credit: Copernicus

“These were during the ‘Great Drought’ of 1875 to 1878, when it is estimated that around 50 million people died in India, China, and parts of Africa and South America,” the EU’s Copernicus service notes. Despite many climate-driven disasters, the world at least avoided a similar experience in 2023-24.

Berkeley Earth provides a slightly different way of looking at it, comparing each year since 1970 with the amount of warming we’d expect from the cumulative greenhouse gas emissions.

A graph showing a reddish wedge, growing from left to right. A black line traces the annual temperatures, which over near the top edge of the wedge until recent years.

Relative to the expected warming from greenhouse gasses, 2024 represents a large departure. Credit: Berkeley Earth

These show that, given year-to-year variations in the climate system, warming has closely tracked expectations over five decades. 2023 and 2024 mark a dramatic departure from that track, although it comes at the end of a decade where most years were above the trend line. Berkeley Earth estimates that there’s just a 1 in 100 chance of that occurring due to the climate’s internal variability.

Is this a new trend?

The big question is whether 2024 is an exception and we should expect things to fall back to the trend that’s dominated since the 1970s, or it marks a departure from the climate’s recent behavior. And that’s something we don’t have a great answer to.

If you take away the influence of recent greenhouse gas emissions and El Niño, you can focus on other potential factors. These include a slight increase expected due to the solar cycle approaching its maximum activity. But, beyond that, most of the other factors are uncertain. The Hunga Tonga eruption put lots of water vapor into the stratosphere, but the estimated effects range from slight warming to cooling equivalent to a strong La Niña. Reductions in pollution from shipping are expected to contribute to warming, but the amount is debated.

There is evidence that a decrease in cloud cover has allowed more sunlight to be absorbed by the Earth, contributing to the planet’s warming. But clouds are typically a response to other factors that influence the climate, such as the amount of water vapor in the atmosphere and the aerosols present to seed water droplets.

It’s possible that a factor that we missed is driving the changes in cloud cover or that 2024 just saw the chaotic nature of the atmosphere result in less cloud cover. Alternatively, we may have crossed a warming tipping point, where the warmth of the atmosphere makes cloud formation less likely. Knowing that will be critical going forward, but we simply don’t have a good answer right now.

Climate goals

There’s an equally unsatisfying answer to what this means for our chance of hitting climate goals. The stretch goal of the Paris Agreement is to limit warming to 1.5° C, because it leads to significantly less severe impacts than the primary, 2.0° target. That’s relative to pre-industrial temperatures, which are defined using the 1850–1900 period, the earliest time where temperature records allow a reconstruction of the global temperature.

Unfortunately, all the organizations that handle global temperatures have some differences in the analysis methods and data used. Given recent data, these differences result in very small divergences in the estimated global temperatures. But with the far larger uncertainties in the 1850–1900 data, they tend to diverge more dramatically. As a result, each organization has a different baseline, and different anomalies relative to that.

As a result, Berkeley Earth registers 2024 as being 1.62° C above preindustrial temperatures, and Copernicus 1.60° C. In contrast, NASA and NOAA place it just under 1.5° C (1.47° and 1.46°, respectively). NASA’s Gavin Schmidt said this is “almost entirely due to the [sea surface temperature] data set being used” in constructing the temperature record.

There is, however, consensus that this isn’t especially meaningful on its own. There’s a good chance that temperatures will drop below the 1.5° mark on all the data sets within the next few years. We’ll want to see temperatures consistently exceed that mark for over a decade before we consider that we’ve passed the milestone.

That said, given that carbon emissions have barely budged in recent years, there’s little doubt that we will eventually end up clearly passing that limit (Berkeley Earth is essentially treating it as exceeded already). But there’s widespread agreement that each increment between 1.5° and 2.0° will likely increase the consequences of climate change, and any continuing emissions will make it harder to bring things back under that target in the future through methods like carbon capture and storage.

So, while we may have committed ourselves to exceed one of our major climate targets, that shouldn’t be viewed as a reason to stop trying to limit greenhouse gas emissions.

Photo of John Timmer

John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

Everyone agrees: 2024 the hottest year since the thermometer was invented Read More »

study:-warming-has-accelerated-due-to-the-earth-absorbing-more-sunlight

Study: Warming has accelerated due to the Earth absorbing more sunlight

The concept of an atmospheric energy imbalance is pretty straightforward: We can measure both the amount of energy the Earth receives from the Sun and how much energy it radiates back into space. Any difference between the two results in a net energy imbalance that’s either absorbed by or extracted from the ocean/atmosphere system. And we’ve been tracking it via satellite for a while now as rising greenhouse gas levels have gradually increased the imbalance.

But greenhouse gases aren’t the only thing having an effect. For example, the imbalance has also increased in the Arctic due to the loss of snow cover and retreat of sea ice. The dark ground and ocean absorb more solar energy compared to the white material that had previously been exposed to the sunlight. Not all of this is felt directly, however, as a lot of the areas where it’s happening are frequently covered by clouds.

Nevertheless, the loss of snow and ice has caused the Earth’s reflectivity, termed its albedo, to decline since the 1970s, enhancing the warming a bit.

Vanishing clouds

The new paper finds that the energy imbalance set a new high in 2023, with a record amount of energy being absorbed by the ocean/atmosphere system. This wasn’t accompanied by a drop in infrared emissions from the Earth, suggesting it wasn’t due to greenhouse gases, which trap heat by absorbing this radiation. Instead, it seems to be due to decreased reflection of incoming sunlight by the Earth.

While there was a general trend in that direction, the planet set a new record low for albedo in 2023. Using two different data sets, the teams identify the areas most effected by this, and they’re not at the poles, indicating loss of snow and ice are unlikely to be the cause. Instead, the key contributor appears to be the loss of low-level clouds. “The cloud-related albedo reduction is apparently largely due to a pronounced decline of low-level clouds over the northern mid-latitude and tropical oceans, in particular the Atlantic,” the researchers say.

Study: Warming has accelerated due to the Earth absorbing more sunlight Read More »

seagrass-is-fantastic-at-carbon-capture—and-it’s-at-risk-of-extinction

Seagrass is fantastic at carbon capture—and it’s at risk of extinction


An underwater gardening experiment along the East Coast aims at restoration.

A crab inhabits a bed of eelgrass at Cape Cod National Seashore in Massachusetts. Eelgrass provides critical habitat for hundreds of species. Credit: Holly Plaisted/National Park Service

In late September, seagrass ecologist Alyssa Novak pulled on her neoprene wetsuit, pressed her snorkel mask against her face, and jumped off an oyster farming boat into the shallow waters of Pleasant Bay, an estuary in the Cape Cod National Seashore in Massachusetts. Through her mask she gazed toward the sandy seabed, about 3 feet below the surface at low tide, where she was about to plant an experimental underwater garden of eelgrass.

Naturally occurring meadows of eelgrass—the most common type of seagrass found along the East Coast of the United States—are vanishing. Like seagrasses around the world, they have been plagued for decades by dredging, disease, and nutrient pollution from wastewater and agricultural runoff. The nutrient overloads have fueled algal blooms and clouded coastal waters with sediments, blocking out sunlight the marine plants need to make food through photosynthesis and suffocating them.

The United Nations Environment Program reports more than 20 of the world’s 72 seagrass species are on the decline. As a result, an estimated 7 percent of these habitats are lost each year.

In the western Atlantic, some eelgrass meadows have been reduced by more than 90 percent in the last 100 years, according to The Nature Conservancy, an environmental nonprofit that works to protect lands and waters around the world.

Now, rising sea surface temperatures caused by global warming are pushing the plant to the brink of extinction. Novak, a research assistant professor at Boston University who has studied eelgrass in New England for more than a decade, and a multidisciplinary team of scientists in different states are trying their best to make sure this does not become reality.

Together, they are working to restore eelgrass populations in coastal parks from Maine to North Carolina using a novel approach that has never been tried before with a marine plant: assisted migration.

“We’re trying to identify thermo-tolerant individuals up and down the East Coast and try to move them into areas where the populations are stressed by increases in sea surface temperature, so that we can give those populations a chance of surviving into the future,” Novak said.

Typically, eelgrass thrives in water temperatures between 60° and 68° Fahrenheit, according to Novak. In the last 20 years, sea surface temperatures in the Northeast have warmed faster than the global ocean and exceeded that safe range, mostly due to human activity like burning fossil fuels, according to NOAA Fisheries, a federal agency charged with managing and protecting marine resources in the US.

Blades of eelgrass are viewed up close at Cape Cod National Seashore.

Credit: Holly Plaisted/National Park Service

Blades of eelgrass are viewed up close at Cape Cod National Seashore. Credit: Holly Plaisted/National Park Service

Around 77° Fahrenheit the plants become stressed and struggle to photosynthesize, said Novak. Around 82° they begin to expire. “That’s when the plants no longer can handle the heat stress, and they end up dying,” she said. And it’s getting hotter.

In recent years, she said, water temperatures along the East Coast have surpassed 82° during peak summer months. By 2050, they are expected to increase in the Northeast by two degrees, she said.

The common garden experiment

Anticipating the deadly forecast for eelgrass, The Nature Conservancy brought together a group of scientists in 2022 to figure out how they might change the plant’s trajectory. Together, the experts on seagrasses, corals, agriculture, forestry, and plant genetics explored options based on what had been done to address the effects of climate change on other ecosystems.

“We wanted to figure out what the solutions were that different groups had come up with, and from those, which ones might apply to the seagrass world,” said Boze Hancock, senior marine restoration scientist with The Nature Conservancy’s global oceans team.

Prolonged marine heatwaves and coral disease have prompted some scientists to experiment with cross-breeding and replanting heat-resistant corals in warming waters, for example. In some cases they have removed whole coral colonies from their natural habitat to preserve their genetics in land-based biobanks.

One of the workshop invitees, biologist Thomas Whitham, shared with the group how he’s used a scientific research tool called the “common garden experiment” to restore deciduous Fremont cottonwood forests that have been dying off in Arizona due to rising temperatures and drought.

The experiments involve collecting plants from different locations and moving them to designated locations to observe how they respond to new environmental conditions. In the case of Fremont cottonwoods, Whitham said the technique has proven vital to identifying trees with specific genetic traits that make them more heat and drought resilient. Cuttings from these trees are now being planted in areas where less resilient trees died off to restore the species in a process known as “assisted migration.”

“We’ve planted many thousands, tens of thousands, of trees using this common garden approach,” said Whitham, a Regents’ professor in the department of biological sciences at Northern Arizona University. It could work for eelgrass too, he told the group.

They could collect seeds from eelgrass populations in the south and plant them in cooler northern waters alongside local seeds and, in effect, identify plants that have a propensity to thrive in warmer temperatures.

Workshop participants were eager to try, said attendee Jonathan Lefcheck, a research ​scientist at the University of Maryland Center for Environmental Science who has studied seagrasses in the Chesapeake Bay for more than 15 years. “If we do nothing, it’s likely that seagrass—eelgrass—will be extirpated all the way up to New York in the next 50 years,” he said. And with it, all the services it provides to wildlife and humans.

Underwater forests

Eelgrass provides critical habitat for hundreds of species.

“It’s the forest under the water in the estuaries,” said Bradley Peterson, a professor of marine science at Stony Brook University’s School of Marine and Atmospheric Sciences who helped initiate the workshops in collaboration with The Nature Conservancy.

Scientists believe seagrasses evolved from terrestrial plants 70 to 100 millions years ago. “When they went into the marine world, they brought all the machinery they had with them for the terrestrial world, real seeds, real flowers, and real roots,” said Peterson, who is working to restore eelgrass near Long Island.

Its green grass blades, which can grow up to a couple feet long, offer food and shelter to horseshoe crabs, seahorses, and fish of all sizes that weave through its mazes. Little shrimp pollinate the plant’s flowers like “bees of the sea,” said Lefcheck. For bigger fish, “it’s this beautiful buffet,” he said. “You get this whole ecosystem that’s built up around this habitat that’s just sort of gently swaying there underneath the waves.”

In New England, eelgrass is vital for commercial scallop and oyster fisheries. Same for the Atlantic cod. “The cod industry is massive, so if you start losing that habitat, then your commercial fisheries go,” Novak said.

You also lose important coastline protection. Seagrass helps prevent erosion and buffers shorelines from flooding and storm surge. It can reduce wave energy by 50 percent, according to Novak. It also improves water quality and clarity by filtering pollutants and storing excess nutrients, reducing the prevalence of bacteria that can cause coral disease or contaminate seafood. “If you lose eelgrass, you’re going to have dirtier waters,” she said. Global warming could also be exacerbated.

tuft of eel grass

Eelgrass is the most dominant type of seagrass along the East Coast.

Credit: d3_plus D.Naruse @ Japan via Getty

Eelgrass is the most dominant type of seagrass along the East Coast. Credit: d3_plus D.Naruse @ Japan via Getty

Seagrasses sequester up to 18 percent of carbon stored in the ocean, capturing it 35 times faster than tropical rainforests, according to the World Wide Fund for Nature. The New York Department of State, Office of Planning, Development and Community Infrastructure reports each acre of seagrass can potentially sequester the same amount of carbon emitted by a car driving nearly 4,000 miles each year. But when this unique marine habitat is destroyed, carbon that has been stored in the plant’s roots and sediments—sometimes for thousands of years—is released back into the atmosphere, said Novak.

Sharing seeds

To have a chance at repopulating eelgrass along the East Coast, scientists like Novak, Peterson, and Lefcheck realized they would have to share information and collaborate across state borders—something to which academics are not always accustomed, according to Novak.

“It’s not our nature to share information that freely, because we’re supposed to be focusing on publishing,” she said. But the crisis at hand had inspired a change in the status quo. “We’re a team,” she said. “We’re about saving the eelgrass and doing what’s best for this ecosystem.”

They call the regional effort HEAT (Helping Eelgrass Adapt to Temperature). In the last year, participants have been working together to identify the best possible sites for planting common gardens along the East Coast. So far, they’ve homed in on several national parks: the Cape Cod National Seashore, Fire Island National Seashore in New York, Assateague Island in Maryland and Cape Hatteras and Cape Lookout national seashores in North Carolina.

“We want to set ourselves up for some success and use the information we have about these parks to guide our decision-making and make sure we’re putting these in places where they might have enough light, where they won’t have as many human impacts,” said Lefcheck.

They’ve also begun collecting and sharing seeds. “We’re sharing actual plants with each other for genomics, and then we’re also sharing seeds with each other for doing our common gardens and for experiments,” Novak said.

This past year Novak sent samples of eelgrass plants collected in Massachusetts to the University of North Carolina Wilmington for Stephanie Kamel, a professor in the department of biology and marine biology at the university, to analyze. Kamel is looking for plants that have specific genetic markers that might make them more resilient to challenging environmental conditions like warmer temperatures and lower light, which is becoming an increasing problem as sea levels rise due to global warming pushing the plants deeper underwater. Currently, she’s analyzing the DNA of 800 eelgrass plants from 60 meadows along the East Coast. “We’re going to have this sort of unprecedented level of detail about genomic variation across the range of Zostera (eelgrass),” said Kamel.

This information could be used to help collaborators figure out which seeds they should plant in different locations based on their specific environmental conditions and challenges, said Jessie Jarvis, a seagrass ecologist and professor who works with Kamel at the University of North Carolina Wilmington.

“It’s almost like a dating app for seagrass,” Jarvis said. “You could be a little bit smarter about picking your source populations to match what your restoration needs are, rather than just kind of throwing seeds from everywhere and hoping that something works.”

In the meantime, though, common gardening remains the most practical tool to figure out which plants from which locations may be the best stock for future eelgrass populations. This past year Kamel and Jarvis piloted a common garden experiment in North Carolina and Virginia.

“We took those seeds from what we thought were, quote, unquote, good sources (in North Carolina), and we actually moved them to Virginia. And then we took some Virginia seeds and moved them to North Carolina to actually see what would happen in terms of growth,” said Kamel. While it’s still too early to draw firm conclusions from the experiment, Kamel said preliminary results seem promising. “There are really encouraging signs that we have been able to find some genomic changes associated with temperature resilience,” she said.

Others are following suit. This past spring, Novak and Peterson harvested reproductive eelgrass shoots filled with seeds while snorkeling and scuba diving in Acadia National Park in Maine and Cape Cod, Nantucket, Gloucester in Massachusetts. Lefcheck harvested in Maryland. “What we do is harvest them before they’ve released the seeds, because the seeds are tiny, like the size of a pinhead,” Lefcheck said. The shoots are then held in saltwater tanks until the seeds drop and can easily be collected and stored until it’s time to plant them.

It’s best to wait to plant eelgrass in the early fall, after most of the late summer storms have passed, according to Novak, who spent several days planting seeds in Pleasant Bay and nearby East Harbor this September with a team including a biologist from the National Park Service and a representative from the Mashpee Wampanoag Tribe. To get to the Pleasant Bay site, they motored out onto the water on an oyster farming boat. “The oyster farmers are interested in the project because our site is adjacent to their farm and they recognize that healthy beds are important to sustaining their livelihood,” Novak said.

Before getting wet, Novak and her team ran through their gardening plan. “We do dry runs on land, just to get everybody organized, but it’s not the same when you get into the water,” she said. “You’re trying to hold things underwater. You can’t see as well, even if you have a mask on.”

They would establish two 25-meter transect lines and then plant seeds from different donor sites in New York and Massachusetts. Nantucket was one of them. “We knew conditions were warmer at that particular site, so we said, let’s, let’s test them at Cape Cod,” she said.

Up to 500 seeds from each location would be planted by releasing them into the water column from a test tube or dropping tea bags filled with the seeds that would meander their way down to the seabed into 1-meter plots.

It was a slow process, Novak said, requiring hyper organization to make sure it’s clear which seeds have been planted where so that they can be monitored. In January, she will return to the sites to see if the plants are germinating. Then in the spring she’ll really be able to measure growth and compare how the different plants are faring in comparison to one another. “By next summer, we should have genomics for all of our populations, so that should really be guiding our efforts at that point,” she said.

Teresa Tomassoni is an environmental journalist covering the intersections between oceans, climate change, coastal communities, and wildlife for Inside Climate News. Her previous work has appeared in The Washington Post, NPR, NBC Latino, and the Smithsonian American Indian Magazine. Teresa holds a graduate degree in journalism from the Craig Newmark Graduate School of Journalism. She is also a recipient of the Stone & Holt Weeks Social Justice Reporting Fellowship. In addition to reporting on oceans, Teresa teaches climate solutions reporting for The School of the New York Times.

This story originally appeared on Inside Climate News.

Photo of Inside Climate News

Seagrass is fantastic at carbon capture—and it’s at risk of extinction Read More »

$300-billion-pledge-at-cop29-climate-summit-a-“paltry-sum”

$300 billion pledge at COP29 climate summit a “paltry sum”

The world’s most important climate talks were pulled back from the brink of collapse after poorer countries reluctantly accepted a finance package of “at least” $300 billion a year from wealthy nations after bitter negotiations.

Fears about stretched budgets around the world and the election of Donald Trump as US president, who has described climate change as a “hoax,” drove the developing countries into acceptance of the slightly improved package after Sunday 2: 30 am local time in Baku.

The UN COP29 climate summit almost collapsed twice throughout Saturday evening and into the early hours of Sunday morning, as vulnerable nations walked out of negotiations and India objected stridently.

As the gavel came down, India’s lead negotiator, Neelesh Shah, leapt to his feet to ask to take the floor, and when he was ignored made a furious timeout gesture above his head and led his team on to the stage in protest.

Speaking from the floor, Indian delegation member Chandni Raina said the country was “extremely disappointed” by the abrupt passage of the agreement, adding: “This was stage-managed.”

“It is a paltry sum,” she said. “I am sorry to say that we cannot accept it. We seek a much higher ambition from developed countries.” The agreement was “nothing more than an optical illusion,” she added.

The broadside was followed by objections from Bolivia, Chile, and Nigeria, who were told by COP29 President Mukhtar Babayev that their statements were noted. Smaller nations, such as Malawi, Fiji, and the Maldives, joined in the grievance.

Simon Stiell, head of the UN climate change arm, said the new goal was an “insurance policy for humanity, amid worsening climate impacts hitting every country” but added that it was “no time for victory laps.”

European Union climate commissioner Wopke Hoekstra tried to assure disappointed smaller nations, saying he was “confident we will reach the $1.3 trillion” economists say developing countries need to shift to green energy and cope with climate change.

$300 billion pledge at COP29 climate summit a “paltry sum” Read More »

air-quality-problems-spur-$200-million-in-funds-to-cut-pollution-at-ports

Air quality problems spur $200 million in funds to cut pollution at ports


Diesel equipment will be replaced with hydrogen- or electric-power gear.

Raquel Garcia has been fighting for years to clean up the air in her neighborhood southwest of downtown Detroit.

Living a little over a mile from the Ambassador Bridge, which thousands of freight trucks cross every day en route to the Port of Detroit, Garcia said she and her neighbors are frequently cleaning soot off their homes.

“You can literally write your name in it,” she said. “My house is completely covered.”

Her neighborhood is part of Wayne County, which is home to heavy industry, including steel plants and major car manufacturers, and suffers from some of the worst air quality in Michigan. In its 2024 State of the Air report, the American Lung Association named Wayne County one of the “worst places to live” in terms of annual exposure to fine particulate matter pollution, or PM2.5.

But Detroit, and several other Midwest cities with major shipping ports, could soon see their air quality improve as port authorities receive hundreds of millions of dollars to replace diesel equipment with cleaner technologies like solar power and electric vehicles.

Last week, the Biden administration announced $3 billion in new grants from the US Environmental Protection Agency’s Clean Ports program, which aims to slash carbon emissions and reduce air pollution at US shipping ports. More than $200 million of that funding will go to four Midwestern states that host ports along the Great Lakes: Michigan, Illinois, Ohio, and Indiana.

The money, which comes from the Inflation Reduction Act, will not only be used to replace diesel-powered equipment and vehicles, but also to install clean energy systems and charging stations, take inventory of annual port emissions, and set plans for reducing them. It will also fund a feasibility study for establishing a green hydrogen fuel hub along the Great Lakes.

The EPA estimates that those changes will, nationwide, reduce carbon pollution in the first 10 years by more than 3 million metric tons, roughly the equivalent of taking 600,000 gasoline-powered cars off the road. The agency also projects reduced emissions of nitrous oxide and PM2.5—both of which can cause serious, long-term health complications—by about 10,000 metric tons and about 180 metric tons, respectively, during that same time period.

“Our nation’s ports are critical to creating opportunity here in America, offering good-paying jobs, moving goods, and powering our economy,” EPA Administrator Michael Regan said in the agency’s press release announcing the funds. “Delivering cleaner technologies and resources to US ports will slash harmful air and climate pollution while protecting people who work in and live nearby ports communities.”

Garcia, who runs the community advocacy nonprofit Southwest Detroit Environmental Vision, said she’s “really excited” to see the Port of Detroit getting those funds, even though it’s just a small part of what’s needed to clean up the city’s air pollution.

“We care about the air,” she said. “There’s a lot of kids in the neighborhood where I live.”

Jumpstarting the transition to cleaner technology

Nationwide, port authorities in 27 states and territories tapped the Clean Ports funding, which they’ll use to buy more than 1,500 units of cargo-handling equipment, such as forklifts and cranes, 1,000 heavy-duty trucks, 10 locomotives, and 20 seafaring vessels, all of which will be powered by electricity or green hydrogen, which doesn’t emit CO2 when burned.

In the Midwest, the Illinois Environmental Protection Agency and the Cleveland-Cuyahoga County Port Authority in Ohio were awarded about $95 million each from the program, the Detroit-Wayne County Port Authority in Michigan was awarded $25 million, and the Ports of Indiana will receive $500,000.

Mark Schrupp, executive director of the Detroit-Wayne County Port Authority, said the funding for his agency will be used to help port operators at three terminals purchase new electric forklifts, cranes, and boat motors, among other zero-emission equipment. The money will also pay for a new solar array that will reduce energy consumption for port facilities, as well as 11 new electric vehicle charging stations.

“This money is helping those [port] businesses make the investment in this clean technology, which otherwise is sometimes five or six times the cost of a diesel-powered equipment,” he said, noting that the costs of clean technologies are expected to fall significantly in the coming years as manufacturers scale up production. “It also exposes them to the potential savings over time—full maintenance costs and other things that come from having the dirtier technology in place.”

Schrupp said that the new equipment will slash the Detroit-Wayne County Port Authority’s overall carbon emissions by more than 8,600 metric tons every year, roughly a 30 percent reduction.

Carly Beck, senior manager of planning, environment and information systems for the Cleveland-Cuyahoga County Port Authority, said its new equipment will reduce the Port of Cleveland’s annual carbon emissions by roughly 1,000 metric tons, or about 40 percent of the emissions tied to the port’s operations. The funding will also pay for two electric tug boats and the installation of solar panels and battery storage on the port’s largest warehouse, she added.

In 2022, Beck said, the Port of Cleveland took an emissions inventory, which found that cargo-handling equipment, building energy use, and idling ships were the port’s biggest sources of carbon emissions. Docked ships would run diesel generators for power as they unloaded, she said, but with the new infrastructure, the cargo-handling equipment and idling ships can draw power from a 2-megawatt solar power system with battery storage.

“We’re essentially creating a microgrid at the port,” she said.

Improving the air for disadvantaged communities

The Clean Ports funding will also be a boon for people like Garcia, who live near a US shipping port.

Shipping ports are notorious for their diesel pollution, which research has shown disproportionately affects poor communities of color. And most, if not all, of the census tracts surrounding the Midwest ports are deemed “disadvantaged communities” by the federal government. The EPA uses a number of factors, including income level and exposure to environmental harms, to determine whether a community is “disadvantaged.”

About 10,000 trucks pass through the Port of Detroit every day, Schrupp said, which helps to explain why residents of Southwest Detroit and the neighboring cities of Ecorse and River Rouge, which sit adjacent to Detroit ports, breathe the state’s dirtiest air.

“We have about 50,000 residents within a few miles of the port, so those communities will definitely benefit,” he said. “This is a very industrialized area.”

Burning diesel or any other fossil fuel produces nitrous oxide or PM2.5, and research has shown that prolonged exposure to high levels of those pollutants can lead to serious health complications, including lung disease and premature death. The Detroit-Wayne County Port Authority estimates that the new port equipment will cut nearly 9 metric tons of PM2.5 emissions and about 120 metric tons of nitrous oxide emissions each year.

Garcia said she’s also excited that some of the Detroit grants will be used to establish workforce training programs, which will show people how to use the new technologies and showcase career opportunities at the ports. Her area is gentrifying quickly, Garcia said, so it’s heartening to see the city and port authority taking steps to provide local employment opportunities.

Beck said that the Port of Cleveland is also surrounded by a lot of heavy industry and that the census tracts directly adjacent to the port are all deemed “disadvantaged” by federal standards.

“We’re trying to be good neighbors and play our part,” she said, “to make it a more pleasant environment.”

Kristoffer Tigue is a staff writer for Inside Climate News, covering climate issues in the Midwest. He previously wrote the twice-weekly newsletter Today’s Climate and helped lead ICN’s national coverage on environmental justice. His work has been published in Reuters, Scientific American, Mother Jones, HuffPost, and many more. Tigue holds a master’s degree in journalism from the Missouri School of Journalism.

This story originally appeared on Inside Climate News.

Photo of Inside Climate News

Air quality problems spur $200 million in funds to cut pollution at ports Read More »

a-how-to-for-ethical-geoengineering-research

A how-to for ethical geoengineering research

Holistic climate justice: The guidelines recognize that geoengineering won’t affect just those people currently residing on Earth, but on future generations as well. Some methods, like stratospheric aerosols, don’t eliminate the risks caused by warming, but shift them onto future generations, who will face sudden and potentially dramatic warming if the geoengineering is ever stopped. Others may cause regional differences in either benefits or warming, shifting consequences to different populations.

Special attention should be paid to those who have historically been on the wrong side of environmental problems in the past. And harms to nature need to be considered as well.

Inclusive public participation: The research shouldn’t be approached as simply a scientific process; instead, any affected communities should be included in the process, and informed consent should be obtained from them. There should be ongoing public engagement with those communities and adapt to their cultural values.

Transparency: The public needs to be aware of who’s funding any geoengineering research and ensure that whoever’s providing the money doesn’t influence decisions regarding the design of the research. Those decisions, and the considerations behind them, should also be made clear to the public.

Informed governance: Any experiments have to conform to laws ranging from local to international. Any research programs should be approved by an independent body before any work starts. All the parties involved—and this could include the funders, the institutions, and outside contractors—should be held accountable to governments, public institutions, and those who will potentially be impacted by the work.

If you think this will make pursuing this research considerably more complicated, you are absolutely correct. But again, even tests of these approaches could have serious environmental consequences. And many of these things represent best practices for any research with potential public consequences; the fact that they haven’t always been pursued is not an excuse to continue to avoid doing them.

A how-to for ethical geoengineering research Read More »

with-four-more-years-like-2023,-carbon-emissions-will-blow-past-1.5°-limit

With four more years like 2023, carbon emissions will blow past 1.5° limit

One way to look at how problematic this is would be to think in terms of a carbon budget. We can estimate how much carbon can be put into the atmosphere before warming reaches 1.5° C. Subtract the emissions we’ve already added, and you get the remaining budget. At this point, the remaining budget for 1.5° C is only 200 Gigatonnes, which means another four years like 2023 will leave us well beyond our budget. For the 2° C budget, we’ve got less than 20 years like 2023 before we go past.

An alternate way to look at the challenge is to consider the emissions reductions that would get us on track. UNEP uses 2019 emissions as a baseline (about 52 Gigatonnes) and determined that, in 2030, we’d need to have emissions cut by 28 percent to get onto the 2° C target, and by 42 percent to be on track for the 1.5° C target.

The NDCs are nowhere close to that, with even the conditional pledges being sufficient to only cut emissions by 10 percent. Ideally, that should be prompting participating nations to be rapidly updating their NDCs to get them better aligned with our stated goals. And, while 90 percent have done so since the signing of the Paris Agreement, only a single country has made updated pledges over the past year.

Countries are also failing to keep their national policies in line with their NDCs. The UNEP report estimates that current policies allow the world collectively to emit two Gigatonnes more than their pledges would see being released.

A limited number of countries are responsible for the huge gap between where we need to go and what we’re actually doing. Nearly two-thirds of 2023’s emissions come from just six countries: China, the US, India, the EU, Russia, and Brazil. By contrast, the 55 nations of the African Union are only producing about 6 percent of the global emissions. Obviously, this means that any actions taken by these six entities will have a disproportionate effect on future emissions. The good news is that at least two of those, the EU and US, saw emissions drop over the year prior (by 7.5 percent in the EU, and 1.4 percent in the US), while Brazil remained largely unchanged.

With four more years like 2023, carbon emissions will blow past 1.5° limit Read More »

can-walls-of-oysters-protect-shores-against-hurricanes?-darpa-wants-to-know.

Can walls of oysters protect shores against hurricanes? Darpa wants to know.


Colonized artificial reef structures could absorb the power of storms.

picture of some shoreline

Credit: Kemter/Getty Images

On October 10, 2018, Tyndall Air Force Base on the Gulf of Mexico—a pillar of American air superiority—found itself under aerial attack. Hurricane Michael, first spotted as a Category 2 storm off the Florida coast, unexpectedly hulked up to a Category 5. Sustained winds of 155 miles per hour whipped into the base, flinging power poles, flipping F-22s, and totaling more than 200 buildings. The sole saving grace: Despite sitting on a peninsula, Tyndall avoided flood damage. Michael’s 9- to 14-foot storm surge swamped other parts of Florida. Tyndall’s main defense was luck.

That $5 billion disaster at Tyndall was just one of a mounting number of extreme-weather events that convinced the US Department of Defense that it needed new ideas to protect the 1,700 coastal bases it’s responsible for globally. As hurricanes Helene and Milton have just shown, beachfront residents face compounding threats from climate change, and the Pentagon is no exception. Rising oceans are chewing away the shore. Stronger storms are more capable of flooding land.

In response, Tyndall will later this month test a new way to protect shorelines from intensified waves and storm surges: a prototype artificial reef, designed by a team led by Rutgers University scientists. The 50-meter-wide array, made up of three chevron-shaped structures each weighing about 46,000 pounds, can take 70 percent of the oomph out of waves, according to tests. But this isn’t your grandaddy’s seawall. It’s specifically designed to be colonized by oysters, some of nature’s most effective wave-killers.

If researchers can optimize these creatures to work in tandem with new artificial structures placed at sea, they believe the resulting barriers can take 90 percent of the energy out of waves. David Bushek, who directs the Haskin Shellfish Research Laboratory at Rutgers, swears he’s not hoping for a megastorm to come and show what his team’s unit is made of. But he’s not not hoping for one. “Models are always imperfect. They’re always a replica of something,” he says. “They’re not the real thing.”

Playing defense Reefense

The project is one of three being developed under a $67.6 million program launched by the US government’s Defense Advanced Research Projects Agency, or Darpa. Cheekily called Reefense, the initiative is the Pentagon’s effort to test if “hybrid” reefs, combining manmade structures with oysters or corals, can perform as well as a good ol’ seawall. Darpa chose three research teams, all led by US universities, in 2022. After two years of intensive research and development, their prototypes are starting to go into the water, with Rutgers’ first up.

Today, the Pentagon protects its coastal assets much as civilians do: by hardening them. Common approaches involve armoring the shore with retaining walls or arranging heavy objects, like rocks or concrete blocks, in long rows. But hardscape structures come with tradeoffs. They deflect rather than absorb wave energy, so protecting one’s own shoreline means exposing someone else’s. They’re also static: As sea levels rise and storms get stronger, it’s getting easier for water to surmount these structures. This wears them down faster and demands constant, expensive repairs.

In recent decades, a new idea has emerged: using nature as infrastructure. Restoring coastal habitats like marshes and mangroves, it turns out, helps hold off waves and storms. “Instead of armoring, you’re using nature’s natural capacity to absorb wave energy,” says Donna Marie Bilkovic, a professor at the Virginia Institute for Marine Science. Darpa is particularly interested in two creatures whose numbers have been decimated by humans but which are terrific wave-breakers when allowed to thrive: oysters and corals.

Oysters are effective wave-killers because of how they grow. The bivalves pile onto each other in large, sturdy mounds. The resulting structure, unlike a smooth seawall, is replete with nooks, crannies, and convolutions. When a wave strikes, its energy gets diffused into these gaps, and further spent on the jagged, complex surfaces of the oysters. Also unlike a seawall, an oyster wall can grow. Oysters have been shown to be capable of building vertically at a rate that matches sea-level rise—which suggests they’ll retain some protective value against higher tides and stronger storms.

Today hundreds of human-tended oyster reefs, particularly on America’s Atlantic coast, use these principles to protect the shore. They take diverse approaches; some look much like natural reefs, while others have an artificial component. Some cultivate oysters for food, with coastal protection a nice co-benefit; others are built specifically to preserve shorelines. What’s missing amid all this experimentation, says Bilkovic, is systematic performance data—the kind that could validate which approaches are most effective and cost-effective. “Right now the innovation is outpacing the science,” she says. “We need to have some type of systematic monitoring of projects, so we can better understand where the techniques work the best. There just isn’t funding, frankly.”

Hybrid deployments

Rather than wait for the data needed to engineer the perfect reef, Darpa wants to rapidly innovate them through a burst of R&D. Reefense has given awardees five years to deploy hybrid reefs that take up to 90 percent of the energy out of waves, without costing significantly more than traditional solutions. The manmade component should block waves immediately. But it should be quickly enhanced by organisms that build, in months or years, a living structure that would take nature decades.

The Rutgers team has built its prototype out of 788 interlocked concrete modules, each 2 feet wide and ranging in height from 1 to 2 feet tall. They have a scalloped appearance, with shelves jutting in all directions. Internally, all these shelves are connected by holes.

A Darpa-funded team will install sea barriers, made of hundreds of concrete modules, near a Florida military base. The scalloped shape should not only dissipate wave energy but invite oysters to build their own structures.

What this means is that when a wave strikes this structure, it smashes into the internal geometry, swirls around, and exits with less energy. This effect alone weakens the wave by 70 percent, according to the US Army Corps of Engineers, which tested a scale model in a wave simulator in Mississippi. But the effect should only improve as oysters colonize the structure. Bushek and his team have tried to design the shelves with the right hardness, texture, and shading to entice them.

But the reef’s value would be diminished if, say, disease were to wipe the mollusks out. This is why Darpa has tasked Rutgers with also engineering oysters resistant to dermo, a protozoan that’s dogged Atlantic oysters for decades. Darpa prohibited them using genetic-modification techniques. But thanks to recent advances in genomics, the Rutgers team can rapidly identify individual oysters with disease-resistant traits. It exposes these oysters to dermo in a lab, and crossbreeds the survivors, producing hardier mollusks. Traditionally it takes about three years to breed a generation of oysters for better disease resistance; Bushek says his team has done it in one.

The tropics are a different story

Oysters may suit the DoD’s needs in temperate waters, but for bases in tropical climates, it’s coral that builds the best seawalls. Hawaii, for instance, enjoys the protection of “fringing” coral reefs that extend offshore for hundreds of yards in a gentle slope along the seabed. The colossal, complex, and porous character of this surface exhausts wave energy over long distances, says Ben Jones, an oceanographer for the Applied Research Laboratory at the University of Hawaii—and head of the university’s Reefense project. He said it’s not unusual to see ocean swells of 6 to 8 feet way offshore, while the water at the seashore laps gently.

A Marine base in Hawaii will test out a new approach to coastal protection inspired by local coral reefs: A forward barrier will take the first blows of the waves, and a scattering of pyramids will further weaken waves before they get to shore.

Inspired by this effect, Jones and a team of researchers are designing an array that they’ll deploy near a US Marine Corps base in Oahu whose shoreline is rapidly receding. While the final design isn’t set yet, the broad strokes are: It will feature two 50-meter-wide barriers laid in rows, backed by 20 pyramid-like obstacles. All of these are hollow, thin-walled structures with sloping profiles and lots of big holes. Waves that crash into them will lose energy by crawling up the sides, but two design aspects of the structure—the width of the holes and the thinness of the walls—will generate turbulence in the water, causing it to spin off more energy as heat.

The manmade structures in Hawaii will be studded with concrete domes meant to encourage coral colonization. Though at grave risk from global warming, coral reefs are thought to provide coastal-protection benefits worth billions of dollars.

In the team’s full vision, the units are bolstered by about a thousand small coral colonies. Jones’ group plans to cover the structures with concrete modules that are about 20 inches in diameter. These have grooves and crevices that offer perfect shelters for coral larvae. The team will initially implant them with lab-bred coral. But they’re also experimenting with enticements, like light and sound, that help attract coral larvae from the wild—the better to build a wall that nature, not the Pentagon, will tend.

A third Reefense team, led by scientists at the University of Miami, takes its inspiration from a different sort of coral. Its design has a three-tiered structure. The foundation is made of long, hexagonal logs punctured with large holes; atop it is a dense layer with smaller holes—“imagine a sponge made of concrete,” says Andrew Baker, director of the university’s Coral Reef Futures Lab and the Reefense team lead.

The team thinks these artificial components will soak up plenty of wave energy—but it’s a crest of elkhorn coral at the top that will finish the job. Native to Florida, the Bahamas, and the Caribbean, elkhorn like to build dense reefs in shallow-water areas with high-intensity waves. They don’t mind getting whacked by water because it helps them harvest food; this whacking keeps wave energy from getting to shore.

Disease has ravaged Florida’s elkhorn populations in recent decades, and now ocean heat waves are dealing further damage. But their critical condition has also motivated policymakers to pursue options to save this iconic state species—including Baker’s, which is to develop an elkhorn more rugged against disease, higher temperatures, and nastier waves. Under Reefense, Baker says, his lab has developed elkhorn with 1.5° to 2° Celsius more heat tolerance than their ancestors. They also claim to have boosted the heat thresholds of symbiotic algae—an existentially important occupant of any healthy reef—and cross-bred local elkhorn with those from Honduras, where reefs have mysteriously withstood scorching waters.

An unexpected permitting issue, though, will force the Miami team to exit Reefense in 2025, without building the test unit it hoped to deploy near a Florida naval base. The federal permitting authority wanted a pot of money set aside to uninstall the structure if needed; Darpa felt it couldn’t do that in a timely way, according to Baker. (Darpa told WIRED every Reefense project has unique permitting challenges, so the Miami team’s fate doesn’t necessarily speak to anything broader. Representatives for the other two Reefense projects said Baker’s issue hasn’t come up for them.)

Though his team’s work with Reefense is coming to a premature end, Baker says, he’s confident their innovations will get deployed elsewhere. He’s been working with Key Biscayne, an island village near Miami whose shorelines have been chewed up by storms. Roland Samimy, the village’s chief resilience and sustainability officer, says they spend millions of dollars every few years importing sand for their rapidly receding beaches. He’s eager to see if a hybrid structure, like the University of Miami design, could offer protection at far lower cost. “People are realizing their manmade structures aren’t as resilient as nature is,” he says.

Not just Darpa

By no means is Darpa the only one experimenting in these areas. Around the world, there are efforts tackling various pieces of the puzzle, like breeding coral for greater heat resistance, or combining coral and oysters with artificial reefs, or designing low-carbon concrete that makes building these structures less environmentally damaging. Bilkovic, of the Virginia Institute for Marine Science, says Reefense will be a success if it demonstrates better ways of doing things than the prevailing methods—and has the data to back this up. “I’m looking forward to seeing what their findings are,” she says. “They’re systematically assessing the effectiveness of the project. Those lessons learned can be translated to other areas, and if the techniques are effective and work well, they can easily be translated to other regions.”

As for Darpa, though the Reefense prototypes are just starting to go in the water, the work is just beginning. All of these first-generation units will be scrutinized—both by the research teams and independent government auditors—to see whether their real-world performance matches what was in the models. Reefense is scheduled to conclude with a final report to the DoD in 2027. It won’t have a “winner” per se; as the Pentagon has bases around the world, it’s likely these three projects will all produce learnings that are relevant elsewhere.

Although their client has the largest military budget in the world, the three Reefense teams have been asked to keep an eye on the economics. Darpa has asked that project costs “not greatly exceed” those of conventional solutions, and tasked government monitors with checking the teams’ math. Catherine Campbell, Reefense’s program manager at Darpa, says affordability doesn’t just make it more likely the Pentagon will employ the technology—but that civilians can, too.

“This isn’t something bespoke for the military… we need to be in line with those kinds of cost metrics [in the civilian sector],” Campbell said in an email. “And that gives it potential for commercialization.”

This story originally appeared on wired.com.

Photo of WIRED

Wired.com is your essential daily guide to what’s next, delivering the most original and complete take you’ll find anywhere on innovation’s impact on technology, science, business and culture.

Can walls of oysters protect shores against hurricanes? Darpa wants to know. Read More »

climate-change-boosted-milton’s-landfall-strength-from-category-2-to-3

Climate change boosted Milton’s landfall strength from Category 2 to 3

Using this simulated data set, called IRIS, the researchers selected for those storms that made landfall along a track similar to that of Milton. Using these, they show that the warming climate has boosted the frequency of storms of Milton’s intensity by 40 percent. Correspondingly, the maximum wind speeds of similar storms have been boosted by about 10 percent. In Milton’s case, that means that, in the absence of climate change, it was likely to have made landfall as a Category 2 storm, rather than the Category 3 it actually was.

Rainfall

The lack of full meteorological data caused a problem when it came to analyzing Milton’s rainfall. The researchers ended up having to analyze rainfall more generally. They took four data sets that do track rainfall across these regions and tracked the link between extreme rainfall and the warming climate to estimate how much more often extreme events occur in a world that is now 1.3° C warmer than it was in pre-industrial times.

They focus on instances of extreme one-day rainfall within the June to November period, looking specifically at 1-in-10-year and 1-in-100-year events. Both of these produced similar results, suggesting that heavy one-day rainfalls are about twice as likely in today’s climates, and the most extreme of these are between 20 and 30 percent more intense.

These results came from three of the four data sets used, which produced largely similar results. The fourth dataset they used suggested a far stronger effect of climate change, but since it wasn’t consistent with the rest, these results weren’t used.

As with the Helene analysis, it’s worth noting that this work represents a specific snapshot in time along a long-term warming trajectory. In other words, it’s looking at the impact of 1.3° C of warming at a time when our emissions are nearly at the point where they commit us to at least 1.5° C of warming. And that will tilt the scales further in favor of extreme weather events like this.

Climate change boosted Milton’s landfall strength from Category 2 to 3 Read More »

rapid-analysis-finds-climate-change’s-fingerprint-on-hurricane-helene

Rapid analysis finds climate change’s fingerprint on Hurricane Helene

The researchers identified two distinct events associated with Helene’s landfall. The first was its actual landfall along the Florida coast. The second was the intense rainfall on the North Carolina/Tennessee border. This rainfall came against a backdrop of previous heavy rain caused by a stalled cold front meeting moisture brought north by the fringes of the hurricane. These two regions were examined separately.

A changed climate

In these two regions, the influence of climate change is estimated to have caused a 10 percent increase in the intensity of the rainfall. That may not seem like much, but it adds up. Over both a two- and three-day window centered on the point of maximal rainfall, climate change is estimated to have increased rainfall along the Florida Coast by 40 percent. For the southern Appalachians, the boost in rainfall is estimated to have been 70 percent.

The probability of storms with the wind intensity of Helene hitting land near where it did is about a once-in-130-year event in the IRIS dataset. Climate change has altered that so it’s now expected to return about once every 50 years. The high sea surface temperatures that helped fuel Helene are estimated to have been made as much as 500 times more likely by our changed climate.

Overall, the researchers estimate that rain events like Helene’s landfall should now be expected about once every seven years, although the uncertainty is large (running from three to 25 years). For the Appalachian region, where rainfall events this severe don’t appear in our records, they are likely to now be a once-in-every-70-years event thanks to climate warming (with an uncertainty of between 20 and 3,000 years).

“Together, these findings show that climate change is enhancing conditions conducive to the most powerful hurricanes like Helene, with more intense rainfall totals and wind speeds,” the researchers behind the work conclude.

Rapid analysis finds climate change’s fingerprint on Hurricane Helene Read More »

greening-of-antartica-shows-how-climate-change-affects-the-frozen-continent

Greening of Antartica shows how climate change affects the frozen continent


Plant growth is accelerating on the Antarctic Peninsula and nearby islands.

Moss and rocks cover the ground on Robert Island in Antarctica. Photographer: Isadora Romero/Bloomberg

Moss and rocks cover the ground on Robert Island in Antarctica. Photographer: Isadora Romero/Bloomberg Credit: Bloomberg via Getty

Moss and rocks cover the ground on Robert Island in Antarctica. Photographer: Isadora Romero/Bloomberg Credit: Bloomberg via Getty

When satellites first started peering down on the craggy, glaciated Antarctic Peninsula about 40 years ago, they saw only a few tiny patches of vegetation covering a total of about 8,000 square feet—less than a football field.

But since then, the Antarctic Peninsula has warmed rapidly, and a new study shows that mosses, along with some lichen, liverworts and associated algae, have colonized more than 4.6 square miles, an area nearly four times the size of New York’s Central Park.

The findings, published Friday in Nature Geoscience, based on a meticulous analysis of Landsat images from 1986 to 2021, show that the greening trend is distinct from natural variability and that it has accelerated by 30 percent since 2016, fast enough to cover nearly 75 football fields per year.

Greening at the opposite end of the planet, in the Arctic, has been widely studied and reported, said co-author Thomas Roland, a paleoecologist with the University of Exeter who collects and analyzes mud samples to study environmental and ecological change. “But the idea,” he said, “that any part of Antarctica could, in any way, be green is something that still really jars a lot of people.”

illustration of Antarctica and satellite photos

Credit: Inside Climate News

Credit: Inside Climate News

As the planet heats up, “even the coldest regions on Earth that we expect and understand to be white and black with snow, ice, and rock are starting to become greener as the planet responds to climate change,” he said.

The tenfold increase in vegetation cover since 1986 “is not huge in the global scheme of things,” Roland added, but the accelerating rate of change and the potential ecological effects are significant. “That’s the real story here,” he said. “The landscape is going to be altered partially because the existing vegetation is expanding, but it could also be altered in the future with new vegetation coming in.”

In the Arctic, vegetation is expanding on a scale that affects the albedo, or the overall reflectivity of the region, which determines the proportion of the sun’s heat energy that is absorbed by the Earth’s surface as opposed to being bounced away from the planet. But the spread of greenery has not yet changed the albedo of Antarctica on a meaningful scale because the vegetated areas are still too small to have a regional impact, said co-author Olly Bartlett, a University of Hertfordshire researcher who specializes in using satellite data to map environmental change.

“The real significance is about the ecological shift on the exposed land, the land that’s ice-free, creating an area suitable for more advanced plant life or invasive species to get a foothold,” he said.

Bartlett said Google Earth Engine enabled the scientists to process a massive amount of data from the Landsat images to meet a high standard of verification of plant growth. As a result, he added, the changes they reported may actually be conservative.

“It’s becoming easier for life to live there,” he said. “These rates of change we’re seeing made us think that perhaps we’ve captured the start of a more dramatic transformation.”

In the areas they studied, changes to the albedo could have a small local effect, Roland said, as more land free of reflective ice “can feed into a positive feedback loop that creates conditions that are more favorable for vegetation expansion as well.”

Antarctic forests at similar CO2 levels

Other research, including fossil studies, suggests that beech trees grew on Antarctica as recently as 2.5 million years ago, when carbon dioxide levels in the atmosphere were similar to today, another indicator of how unchecked greenhouse gas emissions can rapidly warm Earth’s climate.

Currently, there are only two species of flowering plants native to the Antarctic Peninsula, Antarctic hair grass, and Antarctic pearlwort. “But with a few new grass seeds here and there, or a few spores, and all of a sudden, you’ve got a very different ecosystem,” he said.

And it’s not just plants, he added. “Increasingly, we’re seeing evidence that non-native insect life is taking hold in Antarctica. And that can dramatically change things as well.”

The study shows how climate warming will shake up Antarctic ecosystems, said conservation scientist Jasmine Lee, a research fellow with the British Antarctic Survey who was not involved in the new study.

“It is clear that bank-forming mosses are expanding their range with warmer and wetter conditions, which is likely facilitating similar expansions for some of the invertebrate communities that rely on them for habitat,” she said. “At the same time, some specialist species, such as the more dry-loving mosses and invertebrates, might decline.”

She said the new study is valuable because it provides data across a broad region showing that Antarctic ecosystems are already rapidly altering and will continue to do so as climate change progresses.

“We focus a lot on how climate change is melting ice sheets and changing sea ice,” she said. “It’s good to also highlight that the terrestrial ecosystems are being impacted.”

The study shows climate impacts growing in “regions previously thought nearly immune to the accelerated warming we’re seeing today,” said climate policy expert Pam Pearson, director of the International Cryosphere Climate Initiative.

“It’s as important a signal as the loss of Antarctic sea ice over the past several years,” she said.

The new study identified vegetative changes by comparing the Landsat images at a resolution of 300-square-feet per pixel, detailed enough to accurately map vegetative growth, but it didn’t identify specific climate change factors that might be driving the expansion of plant life.

But other recent studies have documented Antarctic changes that could spur plant growth, including how some regions are affected by warm winds and by increasing amounts of rain from atmospheric rivers, as well as by declining sea ice that leads adjacent land areas to warm, all signs of rapid change in Antarctica.

Roland said their new study was in part spurred by previous research showing how fast patches of Antarctic moss were growing vertically and how microbial activity in tiny patches of soil was also accelerating.

“We’d taken these sediment cores, and done all sorts of analysis, including radiocarbon dating … showing the growth in the plants we’d sampled increasing dramatically,” he said.

Those measurements confirmed that the plants are sensitive to climate change, and as a next step, researchers wanted to know “if the plants are growing sideways at the same dramatic rate,” he said. “It’s one thing for plants to be growing upwards very fast. If they’re growing outwards, then you know you’re starting to see massive changes and massive increases in vegetation cover across the peninsula.”

With the study documenting significant horizontal expansion of vegetation, the researchers are now studying how recently deglaciated areas were first colonized by plants. About 90 percent of the glaciers on the Antarctic Peninsula have been shrinking for the past 75 years, Roland said.

“That’s just creating more and more land for this potentially rapid vegetation response,” he said. “So like Olly says, one of the things we can’t rule out is that this really does increase quite dramatically over the next few decades. Our findings raise serious concerns about the environmental future of the Antarctic Peninsula and of the continent as a whole.”

This story originally appeared on Inside Climate News.

Photo of Inside Climate News

Greening of Antartica shows how climate change affects the frozen continent Read More »