chatgpt

openai-teases-12-days-of-mystery-product-launches-starting-tomorrow

OpenAI teases 12 days of mystery product launches starting tomorrow

On Wednesday, OpenAI CEO Sam Altman announced a “12 days of OpenAI” period starting December 5, which will unveil new AI features and products for 12 consecutive weekdays.

Altman did not specify the exact features or products OpenAI plans to unveil, but a report from The Verge about this “12 days of shipmas” event suggests the products may include a public release of the company’s text-to-video model Sora and a new “reasoning” AI model similar to o1-preview. Perhaps we may even see DALL-E 4 or a new image generator based on GPT-4o’s multimodal capabilities.

Altman’s full tweet included hints at releases both big and small:

🎄🎅starting tomorrow at 10 am pacific, we are doing 12 days of openai.

each weekday, we will have a livestream with a launch or demo, some big ones and some stocking stuffers.

we’ve got some great stuff to share, hope you enjoy! merry christmas.

If we’re reading the calendar correctly, 12 weekdays means a new announcement every day until December 20.

OpenAI teases 12 days of mystery product launches starting tomorrow Read More »

certain-names-make-chatgpt-grind-to-a-halt,-and-we-know-why

Certain names make ChatGPT grind to a halt, and we know why

The “David Mayer” block in particular (now resolved) presents additional questions, first posed on Reddit on November 26, as multiple people share this name. Reddit users speculated about connections to David Mayer de Rothschild, though no evidence supports these theories.

The problems with hard-coded filters

Allowing a certain name or phrase to always break ChatGPT outputs could cause a lot of trouble down the line for certain ChatGPT users, opening them up for adversarial attacks and limiting the usefulness of the system.

Already, Scale AI prompt engineer Riley Goodside discovered how an attacker might interrupt a ChatGPT session using a visual prompt injection of the name “David Mayer” rendered in a light, barely legible font embedded in an image. When ChatGPT sees the image (in this case, a math equation), it stops, but the user might not understand why.

The filter also means that it’s likely that ChatGPT won’t be able to answer questions about this article when browsing the web, such as through ChatGPT with Search.  Someone could use that to potentially prevent ChatGPT from browsing and processing a website on purpose if they added a forbidden name to the site’s text.

And then there’s the inconvenience factor. Preventing ChatGPT from mentioning or processing certain names like “David Mayer,” which is likely a popular name shared by hundreds if not thousands of people, means that people who share that name will have a much tougher time using ChatGPT. Or, say, if you’re a teacher and you have a student named David Mayer and you want help sorting a class list, ChatGPT would refuse the task.

These are still very early days in AI assistants, LLMs, and chatbots. Their use has opened up numerous opportunities and vulnerabilities that people are still probing daily. How OpenAI might resolve these issues is still an open question.

Certain names make ChatGPT grind to a halt, and we know why Read More »

amazon-pours-another-$4b-into-anthropic,-openai’s-biggest-rival

Amazon pours another $4B into Anthropic, OpenAI’s biggest rival

Anthropic, founded by former OpenAI executives Dario and Daniela Amodei in 2021, will continue using Google’s cloud services along with Amazon’s infrastructure. The UK Competition and Markets Authority reviewed Amazon’s partnership with Anthropic earlier this year and ultimately determined it did not have jurisdiction to investigate further, clearing the way for the partnership to continue.

Shaking the money tree

Amazon’s renewed investment in Anthropic also comes during a time of intense competition between cloud providers Amazon, Microsoft, and Google. Each company has made strategic partnerships with AI model developers—Microsoft with OpenAI (to the tune of $13 billion), Google with Anthropic (committing $2 billion over time), for example. These investments also encourage the use of each company’s data centers as demand for AI grows.

The size of these investments reflects the current state of AI development. OpenAI raised an additional $6.6 billion in October, potentially valuing the company at $157 billion. Anthropic has been eyeballing a $40 billion valuation during a recent investment round.

Training and running AI models is very expensive. While Google and Meta have their own profitable mainline businesses that can subsidize AI development, dedicated AI firms like OpenAI and Anthropic need constant infusions of cash to stay afloat—in other words, this won’t be the last time we hear of billion-dollar-scale AI investments from Big Tech.

Amazon pours another $4B into Anthropic, OpenAI’s biggest rival Read More »

niantic-uses-pokemon-go-player-data-to-build-ai-navigation-system

Niantic uses Pokémon Go player data to build AI navigation system

Last week, Niantic announced plans to create an AI model for navigating the physical world using scans collected from players of its mobile games, such as Pokémon Go, and from users of its Scaniverse app, reports 404 Media.

All AI models require training data. So far, companies have collected data from websites, YouTube videos, books, audio sources, and more, but this is perhaps the first we’ve heard of AI training data collected through a mobile gaming app.

“Over the past five years, Niantic has focused on building our Visual Positioning System (VPS), which uses a single image from a phone to determine its position and orientation using a 3D map built from people scanning interesting locations in our games and Scaniverse,” Niantic wrote in a company blog post.

The company calls its creation a “large geospatial model” (LGM), drawing parallels to large language models (LLMs) like the kind that power ChatGPT. Whereas language models process text, Niantic’s model will process physical spaces using geolocated images collected through its apps.

The scale of Niantic’s data collection reveals the company’s sizable presence in the AR space. The model draws from over 10 million scanned locations worldwide, with users capturing roughly 1 million new scans weekly through Pokémon Go and Scaniverse. These scans come from a pedestrian perspective, capturing areas inaccessible to cars and street-view cameras.

First-person scans

The company reports it has trained more than 50 million neural networks, each representing a specific location or viewing angle. These networks compress thousands of mapping images into digital representations of physical spaces. Together, they contain over 150 trillion parameters—adjustable values that help the networks recognize and understand locations. Multiple networks can contribute to mapping a single location, and Niantic plans to combine its knowledge into one comprehensive model that can understand any location, even from unfamiliar angles.

Niantic uses Pokémon Go player data to build AI navigation system Read More »

openai-accused-of-trying-to-profit-off-ai-model-inspection-in-court

OpenAI accused of trying to profit off AI model inspection in court


Experiencing some technical difficulties

How do you get an AI model to confess what’s inside?

Credit: Aurich Lawson | Getty Images

Since ChatGPT became an instant hit roughly two years ago, tech companies around the world have rushed to release AI products while the public is still in awe of AI’s seemingly radical potential to enhance their daily lives.

But at the same time, governments globally have warned it can be hard to predict how rapidly popularizing AI can harm society. Novel uses could suddenly debut and displace workers, fuel disinformation, stifle competition, or threaten national security—and those are just some of the obvious potential harms.

While governments scramble to establish systems to detect harmful applications—ideally before AI models are deployed—some of the earliest lawsuits over ChatGPT show just how hard it is for the public to crack open an AI model and find evidence of harms once a model is released into the wild. That task is seemingly only made harder by an increasingly thirsty AI industry intent on shielding models from competitors to maximize profits from emerging capabilities.

The less the public knows, the seemingly harder and more expensive it is to hold companies accountable for irresponsible AI releases. This fall, ChatGPT-maker OpenAI was even accused of trying to profit off discovery by seeking to charge litigants retail prices to inspect AI models alleged as causing harms.

In a lawsuit raised by The New York Times over copyright concerns, OpenAI suggested the same model inspection protocol used in a similar lawsuit raised by book authors.

Under that protocol, the NYT could hire an expert to review highly confidential OpenAI technical materials “on a secure computer in a secured room without Internet access or network access to other computers at a secure location” of OpenAI’s choosing. In this closed-off arena, the expert would have limited time and limited queries to try to get the AI model to confess what’s inside.

The NYT seemingly had few concerns about the actual inspection process but bucked at OpenAI’s intended protocol capping the number of queries their expert could make through an application programming interface to $15,000 worth of retail credits. Once litigants hit that cap, OpenAI suggested that the parties split the costs of remaining queries, charging the NYT and co-plaintiffs half-retail prices to finish the rest of their discovery.

In September, the NYT told the court that the parties had reached an “impasse” over this protocol, alleging that “OpenAI seeks to hide its infringement by professing an undue—yet unquantified—’expense.'” According to the NYT, plaintiffs would need $800,000 worth of retail credits to seek the evidence they need to prove their case, but there’s allegedly no way it would actually cost OpenAI that much.

“OpenAI has refused to state what its actual costs would be, and instead improperly focuses on what it charges its customers for retail services as part of its (for profit) business,” the NYT claimed in a court filing.

In its defense, OpenAI has said that setting the initial cap is necessary to reduce the burden on OpenAI and prevent a NYT fishing expedition. The ChatGPT maker alleged that plaintiffs “are requesting hundreds of thousands of dollars of credits to run an arbitrary and unsubstantiated—and likely unnecessary—number of searches on OpenAI’s models, all at OpenAI’s expense.”

How this court debate resolves could have implications for future cases where the public seeks to inspect models causing alleged harms. It seems likely that if a court agrees OpenAI can charge retail prices for model inspection, it could potentially deter lawsuits from any plaintiffs who can’t afford to pay an AI expert or commercial prices for model inspection.

Lucas Hansen, co-founder of CivAI—a company that seeks to enhance public awareness of what AI can actually do—told Ars that probably a lot of inspection can be done on public models. But often, public models are fine-tuned, perhaps censoring certain queries and making it harder to find information that a model was trained on—which is the goal of NYT’s suit. By gaining API access to original models instead, litigants could have an easier time finding evidence to prove alleged harms.

It’s unclear exactly what it costs OpenAI to provide that level of access. Hansen told Ars that costs of training and experimenting with models “dwarfs” the cost of running models to provide full capability solutions. Developers have noted in forums that costs of API queries quickly add up, with one claiming OpenAI’s pricing is “killing the motivation to work with the APIs.”

The NYT’s lawyers and OpenAI declined to comment on the ongoing litigation.

US hurdles for AI safety testing

Of course, OpenAI is not the only AI company facing lawsuits over popular products. Artists have sued makers of image generators for allegedly threatening their livelihoods, and several chatbots have been accused of defamation. Other emerging harms include very visible examples—like explicit AI deepfakes, harming everyone from celebrities like Taylor Swift to middle schoolers—as well as underreported harms, like allegedly biased HR software.

A recent Gallup survey suggests that Americans are more trusting of AI than ever but still twice as likely to believe AI does “more harm than good” than that the benefits outweigh the harms. Hansen’s CivAI creates demos and interactive software for education campaigns helping the public to understand firsthand the real dangers of AI. He told Ars that while it’s hard for outsiders to trust a study from “some random organization doing really technical work” to expose harms, CivAI provides a controlled way for people to see for themselves how AI systems can be misused.

“It’s easier for people to trust the results, because they can do it themselves,” Hansen told Ars.

Hansen also advises lawmakers grappling with AI risks. In February, CivAI joined the Artificial Intelligence Safety Institute Consortium—a group including Fortune 500 companies, government agencies, nonprofits, and academic research teams that help to advise the US AI Safety Institute (AISI). But so far, Hansen said, CivAI has not been very active in that consortium beyond scheduling a talk to share demos.

The AISI is supposed to protect the US from risky AI models by conducting safety testing to detect harms before models are deployed. Testing should “address risks to human rights, civil rights, and civil liberties, such as those related to privacy, discrimination and bias, freedom of expression, and the safety of individuals and groups,” President Joe Biden said in a national security memo last month, urging that safety testing was critical to support unrivaled AI innovation.

“For the United States to benefit maximally from AI, Americans must know when they can trust systems to perform safely and reliably,” Biden said.

But the AISI’s safety testing is voluntary, and while companies like OpenAI and Anthropic have agreed to the voluntary testing, not every company has. Hansen is worried that AISI is under-resourced and under-budgeted to achieve its broad goals of safeguarding America from untold AI harms.

“The AI Safety Institute predicted that they’ll need about $50 million in funding, and that was before the National Security memo, and it does not seem like they’re going to be getting that at all,” Hansen told Ars.

Biden had $50 million budgeted for AISI in 2025, but Donald Trump has threatened to dismantle Biden’s AI safety plan upon taking office.

The AISI was probably never going to be funded well enough to detect and deter all AI harms, but with its future unclear, even the limited safety testing the US had planned could be stalled at a time when the AI industry continues moving full speed ahead.

That could largely leave the public at the mercy of AI companies’ internal safety testing. As frontier models from big companies will likely remain under society’s microscope, OpenAI has promised to increase investments in safety testing and help establish industry-leading safety standards.

According to OpenAI, that effort includes making models safer over time, less prone to producing harmful outputs, even with jailbreaks. But OpenAI has a lot of work to do in that area, as Hansen told Ars that he has a “standard jailbreak” for OpenAI’s most popular release, ChatGPT, “that almost always works” to produce harmful outputs.

The AISI did not respond to Ars’ request to comment.

NYT “nowhere near done” inspecting OpenAI models

For the public, who often become guinea pigs when AI acts unpredictably, risks remain, as the NYT case suggests that the costs of fighting AI companies could go up while technical hiccups could delay resolutions. Last week, an OpenAI filing showed that NYT’s attempts to inspect pre-training data in a “very, very tightly controlled environment” like the one recommended for model inspection were allegedly continuously disrupted.

“The process has not gone smoothly, and they are running into a variety of obstacles to, and obstructions of, their review,” the court filing describing NYT’s position said. “These severe and repeated technical issues have made it impossible to effectively and efficiently search across OpenAI’s training datasets in order to ascertain the full scope of OpenAI’s infringement. In the first week of the inspection alone, Plaintiffs experienced nearly a dozen disruptions to the inspection environment, which resulted in many hours when News Plaintiffs had no access to the training datasets and no ability to run continuous searches.”

OpenAI was additionally accused of refusing to install software the litigants needed and randomly shutting down ongoing searches. Frustrated after more than 27 days of inspecting data and getting “nowhere near done,” the NYT keeps pushing the court to order OpenAI to provide the data instead. In response, OpenAI said plaintiffs’ concerns were either “resolved” or discussions remained “ongoing,” suggesting there was no need for the court to intervene.

So far, the NYT claims that it has found millions of plaintiffs’ works in the ChatGPT pre-training data but has been unable to confirm the full extent of the alleged infringement due to the technical difficulties. Meanwhile, costs keep accruing in every direction.

“While News Plaintiffs continue to bear the burden and expense of examining the training datasets, their requests with respect to the inspection environment would be significantly reduced if OpenAI admitted that they trained their models on all, or the vast majority, of News Plaintiffs’ copyrighted content,” the court filing said.

Photo of Ashley Belanger

Ashley is a senior policy reporter for Ars Technica, dedicated to tracking social impacts of emerging policies and new technologies. She is a Chicago-based journalist with 20 years of experience.

OpenAI accused of trying to profit off AI model inspection in court Read More »

chatgpt’s-success-could-have-come-sooner,-says-former-google-ai-researcher

ChatGPT’s success could have come sooner, says former Google AI researcher


A co-author of Attention Is All You Need reflects on ChatGPT’s surprise and Google’s conservatism.

Jakob Uszkoreit Credit: Jakob Uszkoreit / Getty Images

In 2017, eight machine-learning researchers at Google released a groundbreaking research paper called Attention Is All You Need, which introduced the Transformer AI architecture that underpins almost all of today’s high-profile generative AI models.

The Transformer has made a key component of the modern AI boom possible by translating (or transforming, if you will) input chunks of data called “tokens” into another desired form of output using a neural network. Variations of the Transformer architecture power language models like GPT-4o (and ChatGPT), audio synthesis models that run Google’s NotebookLM and OpenAI’s Advanced Voice Mode, video synthesis models like Sora, and image synthesis models like Midjourney.

At TED AI 2024 in October, one of those eight researchers, Jakob Uszkoreit, spoke with Ars Technica about the development of transformers, Google’s early work on large language models, and his new venture in biological computing.

In the interview, Uszkoreit revealed that while his team at Google had high hopes for the technology’s potential, they didn’t quite anticipate its pivotal role in products like ChatGPT.

The Ars interview: Jakob Uszkoreit

Ars Technica: What was your main contribution to the Attention is All You Need paper?

Jakob Uszkoreit (JU): It’s spelled out in the footnotes, but my main contribution was to propose that it would be possible to replace recurrence [from Recurrent Neural Networks] in the dominant sequence transduction models at the time with the attention mechanism, or more specifically self-attention. And that it could be more efficient and, as a result, also more effective.

Ars: Did you have any idea what would happen after your group published that paper? Did you foresee the industry it would create and the ramifications?

JU: First of all, I think it’s really important to keep in mind that when we did that, we were standing on the shoulders of giants. And it wasn’t just that one paper, really. It was a long series of works by some of us and many others that led to this. And so to look at it as if this one paper then kicked something off or created something—I think that is taking a view that we like as humans from a storytelling perspective, but that might not actually be that accurate of a representation.

My team at Google was pushing on attention models for years before that paper. It’s a lot longer of a slog with much, much more, and that’s just my group. Many others were working on this, too, but we had high hopes that it would push things forward from a technological perspective. Did we think that it would play a role in really enabling, or at least apparently, seemingly, flipping a switch when it comes to facilitating products like ChatGPT? I don’t think so. I mean, to be very clear in terms of LLMs and their capabilities, even around the time we published the paper, we saw phenomena that were pretty staggering.

We didn’t get those out into the world in part because of what really is maybe a notion of conservatism around products at Google at the time. But we also, even with those signs, weren’t that confident that stuff in and of itself would make that compelling of a product. But did we have high hopes? Yeah.

Ars: Since you knew there were large language models at Google, what did you think when ChatGPT broke out into a public success? “Damn, they got it, and we didn’t?”

JU: There was a notion of, well, “that could have happened.” I think it was less of a, “Oh dang, they got it first” or anything of the like. It was more of a “Whoa, that could have happened sooner.” Was I still amazed by just how quickly people got super creative using that stuff? Yes, that was just breathtaking.

Jakob Uskoreit presenting at TED AI 2024.

Jakob Uszkoreit presenting at TED AI 2024. Credit: Benj Edwards

Ars: You weren’t at Google at that point anymore, right?

JU: I wasn’t anymore. And in a certain sense, you could say the fact that Google wouldn’t be the place to do that factored into my departure. I left not because of what I didn’t like at Google as much as I left because of what I felt I absolutely had to do elsewhere, which is to start Inceptive.

But it was really motivated by just an enormous, not only opportunity, but a moral obligation in a sense, to do something that was better done outside in order to design better medicines and have very direct impact on people’s lives.

Ars: The funny thing with ChatGPT is that I was using GPT-3 before that. So when ChatGPT came out, it wasn’t that big of a deal to some people who were familiar with the tech.

JU: Yeah, exactly. If you’ve used those things before, you could see the progression and you could extrapolate. When OpenAI developed the earliest GPTs with Alec Radford and those folks, we would talk about those things despite the fact that we weren’t at the same companies. And I’m sure there was this kind of excitement, how well-received the actual ChatGPT product would be by how many people, how fast. That still, I think, is something that I don’t think anybody really anticipated.

Ars: I didn’t either when I covered it. It felt like, “Oh, this is a chatbot hack of GPT-3 that feeds its context in a loop.” And I didn’t think it was a breakthrough moment at the time, but it was fascinating.

JU: There are different flavors of breakthroughs. It wasn’t a technological breakthrough. It was a breakthrough in the realization that at that level of capability, the technology had such high utility.

That, and the realization that, because you always have to take into account how your users actually use the tool that you create, and you might not anticipate how creative they would be in their ability to make use of it, how broad those use cases are, and so forth.

That is something you can sometimes only learn by putting something out there, which is also why it is so important to remain experiment-happy and to remain failure-happy. Because most of the time, it’s not going to work. But some of the time it’s going to work—and very, very rarely it’s going to work like [ChatGPT did].

Ars: You’ve got to take a risk. And Google didn’t have an appetite for taking risks?

JU: Not at that time. But if you think about it, if you look back, it’s actually really interesting. Google Translate, which I worked on for many years, was actually similar. When we first launched Google Translate, the very first versions, it was a party joke at best. And we took it from that to being something that was a truly useful tool in not that long of a period. Over the course of those years, the stuff that it sometimes output was so embarrassingly bad at times, but Google did it anyway because it was the right thing to try. But that was around 2008, 2009, 2010.

Ars: Do you remember AltaVista’sBabel Fish?

JU: Oh yeah, of course.

Ars: When that came out, it blew my mind. My brother and I would do this thing where we would translate text back and forth between languages for fun because it would garble the text.

JU: It would get worse and worse and worse. Yeah.

Programming biological computers

After his time at Google, Uszkoreit co-founded Inceptive to apply deep learning to biochemistry. The company is developing what he calls “biological software,” where AI compilers translate specified behaviors into RNA sequences that can perform desired functions when introduced to biological systems.

Ars: What are you up to these days?

JU: In 2021 we co-founded Inceptive in order to use deep learning and high throughput biochemistry experimentation to design better medicines that truly can be programmed. We think of this as really just step one in the direction of something that we call biological software.

Biological software is a little bit like computer software in that you have some specification of the behavior that you want, and then you have a compiler that translates that into a piece of computer software that then runs on a computer exhibiting the functions or the functionality that you specify.

You specify a piece of a biological program and you compile that, but not with an engineered compiler, because life hasn’t been engineered like computers have been engineered. But with a learned AI compiler, you translate that or compile that into molecules that when inserted into biological systems, organisms, our cells exhibit those functions that you’ve programmed into.

A pharmacist holds a bottle containing Moderna’s bivalent COVID-19 vaccine. Credit: Getty | Mel Melcon

Ars: Is that anything like how the mRNA COVID vaccines work?

JU: A very, very simple example of that are the mRNA COVID vaccines where the program says, “Make this modified viral antigen” and then our cells make that protein. But you could imagine molecules that exhibit far more complex behaviors. And if you want to get a picture of how complex those behaviors could be, just remember that RNA viruses are just that. They’re just an RNA molecule that when entering an organism exhibits incredibly complex behavior such as distributing itself across an organism, distributing itself across the world, doing certain things only in a subset of your cells for a certain period of time, and so on and so forth.

And so you can imagine that if we managed to even just design molecules with a teeny tiny fraction of such functionality, of course with the goal not of making people sick, but of making them healthy, it would truly transform medicine.

Ars: How do you not accidentally create a monster RNA sequence that just wrecks everything?

JU: The amazing thing is that medicine for the longest time has existed in a certain sense outside of science. It wasn’t truly understood, and we still often don’t truly understand their actual mechanisms of action.

As a result, humanity had to develop all of these safeguards and clinical trials. And even before you enter the clinic, all of these empirical safeguards prevent us from accidentally doing [something dangerous]. Those systems have been in place for as long as modern medicine has existed. And so we’re going to keep using those systems, and of course with all the diligence necessary. We’ll start with very small systems, individual cells in future experimentation, and follow the same established protocols that medicine has had to follow all along in order to ensure that these molecules are safe.

Ars: Thank you for taking the time to do this.

JU: No, thank you.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a widely-cited tech historian. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

ChatGPT’s success could have come sooner, says former Google AI researcher Read More »

claude-ai-to-process-secret-government-data-through-new-palantir-deal

Claude AI to process secret government data through new Palantir deal

An ethical minefield

Since its founders started Anthropic in 2021, the company has marketed itself as one that takes an ethics- and safety-focused approach to AI development. The company differentiates itself from competitors like OpenAI by adopting what it calls responsible development practices and self-imposed ethical constraints on its models, such as its “Constitutional AI” system.

As Futurism points out, this new defense partnership appears to conflict with Anthropic’s public “good guy” persona, and pro-AI pundits on social media are noticing. Frequent AI commentator Nabeel S. Qureshi wrote on X, “Imagine telling the safety-concerned, effective altruist founders of Anthropic in 2021 that a mere three years after founding the company, they’d be signing partnerships to deploy their ~AGI model straight to the military frontlines.

Anthropic's

Anthropic’s “Constitutional AI” logo.

Credit: Anthropic / Benj Edwards

Anthropic’s “Constitutional AI” logo. Credit: Anthropic / Benj Edwards

Aside from the implications of working with defense and intelligence agencies, the deal connects Anthropic with Palantir, a controversial company which recently won a $480 million contract to develop an AI-powered target identification system called Maven Smart System for the US Army. Project Maven has sparked criticism within the tech sector over military applications of AI technology.

It’s worth noting that Anthropic’s terms of service do outline specific rules and limitations for government use. These terms permit activities like foreign intelligence analysis and identifying covert influence campaigns, while prohibiting uses such as disinformation, weapons development, censorship, and domestic surveillance. Government agencies that maintain regular communication with Anthropic about their use of Claude may receive broader permissions to use the AI models.

Even if Claude is never used to target a human or as part of a weapons system, other issues remain. While its Claude models are highly regarded in the AI community, they (like all LLMs) have the tendency to confabulate, potentially generating incorrect information in a way that is difficult to detect.

That’s a huge potential problem that could impact Claude’s effectiveness with secret government data, and that fact, along with the other associations, has Futurism’s Victor Tangermann worried. As he puts it, “It’s a disconcerting partnership that sets up the AI industry’s growing ties with the US military-industrial complex, a worrying trend that should raise all kinds of alarm bells given the tech’s many inherent flaws—and even more so when lives could be at stake.”

Claude AI to process secret government data through new Palantir deal Read More »

anthropic’s-haiku-3.5-surprises-experts-with-an-“intelligence”-price-increase

Anthropic’s Haiku 3.5 surprises experts with an “intelligence” price increase

Speaking of Opus, Claude 3.5 Opus is nowhere to be seen, as AI researcher Simon Willison noted to Ars Technica in an interview. “All references to 3.5 Opus have vanished without a trace, and the price of 3.5 Haiku was increased the day it was released,” he said. “Claude 3.5 Haiku is significantly more expensive than both Gemini 1.5 Flash and GPT-4o mini—the excellent low-cost models from Anthropic’s competitors.”

Cheaper over time?

So far in the AI industry, newer versions of AI language models typically maintain similar or cheaper pricing to their predecessors. The company had initially indicated Claude 3.5 Haiku would cost the same as the previous version before announcing the higher rates.

“I was expecting this to be a complete replacement for their existing Claude 3 Haiku model, in the same way that Claude 3.5 Sonnet eclipsed the existing Claude 3 Sonnet while maintaining the same pricing,” Willison wrote on his blog. “Given that Anthropic claim that their new Haiku out-performs their older Claude 3 Opus, this price isn’t disappointing, but it’s a small surprise nonetheless.”

Claude 3.5 Haiku arrives with some trade-offs. While the model produces longer text outputs and contains more recent training data, it cannot analyze images like its predecessor. Alex Albert, who leads developer relations at Anthropic, wrote on X that the earlier version, Claude 3 Haiku, will remain available for users who need image processing capabilities and lower costs.

The new model is not yet available in the Claude.ai web interface or app. Instead, it runs on Anthropic’s API and third-party platforms, including AWS Bedrock. Anthropic markets the model for tasks like coding suggestions, data extraction and labeling, and content moderation, though, like any LLM, it can easily make stuff up confidently.

“Is it good enough to justify the extra spend? It’s going to be difficult to figure that out,” Willison told Ars. “Teams with robust automated evals against their use-cases will be in a good place to answer that question, but those remain rare.”

Anthropic’s Haiku 3.5 surprises experts with an “intelligence” price increase Read More »

not-just-chatgpt-anymore:-perplexity-and-anthropic’s-claude-get-desktop-apps

Not just ChatGPT anymore: Perplexity and Anthropic’s Claude get desktop apps

There’s a lot going on in the world of Mac apps for popular AI services. In the past week, Anthropic has released a desktop app for its popular Claude chatbot, and Perplexity launched a native app for its AI-driven search service.

On top of that, OpenAI updated its ChatGPT Mac app with support for its flashy advanced voice feature.

Like the ChatGPT app that debuted several weeks ago, the Perplexity app adds a keyboard shortcut that allows you to enter a query from anywhere on your desktop. You can use the app to ask follow-up questions and carry on a conversation about what it finds.

It’s free to download and use, but Perplexity offers subscriptions for major users.

Perplexity’s search emphasis meant it wasn’t previously a direct competitor to OpenAI’s ChatGPT, but OpenAI recently launched SearchGPT, a search-focused variant of its popular product. SearchGPT is not yet supported in the desktop app, though.

Anthropic’s Claude, on the other hand, is a more direct competitor to ChatGPT. It works similarly to ChatGPT but has different strengths, particularly in software development. The Claude app is free to download, but it’s in beta, and like Perplexity and OpenAI, Anthropic charges for more advanced users.

When ChatGPT launched its Mac app, it didn’t release a Windows app right away, saying that it was focused on where its users were at the time. A Windows app recently arrived, and Anthropic took a different approach, simultaneously introducing Windows and Mac apps.

Previously, all these tools offered mobile apps and web apps, but not necessarily native desktop apps.

Not just ChatGPT anymore: Perplexity and Anthropic’s Claude get desktop apps Read More »

ios-18.2-developer-beta-adds-chatgpt-and-image-generation-features

iOS 18.2 developer beta adds ChatGPT and image-generation features

Today, Apple released the first developer beta of iOS 18.2 for supported devices. This beta release marks the first time several key AI features that Apple teased at its developer conference this June are available.

Apple is marketing a wide range of generative AI features under the banner “Apple Intelligence.” Initially, Apple Intelligence was planned to release as part of iOS 18, but some features slipped to iOS 18.1, others to iOS 18.2, and a few still to future undisclosed software updates.

iOS 18.1 has been in beta for a while and includes improvements to Siri, generative writing tools that help with rewriting or proofreading, smart replies for Messages, and notification summaries. That update is expected to reach the public next week.

Today’s developer update, iOS 18.2, includes some potentially more interesting components of Apple Intelligence, including Genmoji, Image Playground, Visual Intelligence with Camera Control, and ChatGPT integration.

Genmoji and Image Playground allow users to generate images on-device to send to friends in Messages; there will be Genmoji and Image Playground APIs to allow third-party messaging apps to work with Genmojis, too.

ChatGPT integration allows Siri to pass off user queries that are outside Siri’s normal scope to be answered instead by OpenAI’s ChatGPT. A ChatGPT account is not required, but logging in with an existing account gives you access to premium models available as part of a ChatGPT subscription. If you’re using these features without a ChatGPT account, OpenAI won’t be able to retain your data or use it to train models. If you connect your ChatGPT account, though, then OpenAI’s privacy policies will apply for ChatGPT queries instead of Apple’s.

Genmoji and Image Playground queries will be handled locally on the user’s device, but other Apple Intelligence features may dynamically opt to send queries to the cloud for computation.

There’s no word yet on when iOS 18.2 will be released publicly.

iOS 18.2 developer beta adds ChatGPT and image-generation features Read More »

openai-releases-chatgpt-app-for-windows

OpenAI releases ChatGPT app for Windows

On Thursday, OpenAI released an early Windows version of its first ChatGPT app for Windows, following a Mac version that launched in May. Currently, it’s only available to subscribers of Plus, Team, Enterprise, and Edu versions of ChatGPT, and users can download it for free in the Microsoft Store for Windows.

OpenAI is positioning the release as a beta test. “This is an early version, and we plan to bring the full experience to all users later this year,” OpenAI writes on the Microsoft Store entry for the app. (Interestingly, ChatGPT shows up as being rated “T for Teen” by the ESRB in the Windows store, despite not being a video game.)

A screenshot of the new Windows ChatGPT app captured on October 18, 2024.

A screenshot of the new Windows ChatGPT app captured on October 18, 2024.

Credit: Benj Edwards

A screenshot of the new Windows ChatGPT app captured on October 18, 2024. Credit: Benj Edwards

Upon opening the app, OpenAI requires users to log into a paying ChatGPT account, and from there, the app is basically identical to the web browser version of ChatGPT. You can currently use it to access several models: GPT-4o, GPT-4o with Canvas, 01-preview, 01-mini, GPT-4o mini, and GPT-4. Also, it can generate images using DALL-E 3 or analyze uploaded files and images.

If you’re running Windows 11, you can instantly call up a small ChatGPT window when the app is open using an Alt+Space shortcut (it did not work in Windows 10 when we tried). That could be handy for asking ChatGPT a quick question at any time.

A screenshot of the new Windows ChatGPT app listing in the Microsoft Store captured on October 18, 2024.

Credit: Benj Edwards

A screenshot of the new Windows ChatGPT app listing in the Microsoft Store captured on October 18, 2024. Credit: Benj Edwards

And just like the web version, all the AI processing takes place in the cloud on OpenAI’s servers, which means an Internet connection is required.

So as usual, chat like somebody’s watching, and don’t rely on ChatGPT as a factual reference for important decisions—GPT-4o in particular is great at telling you what you want to hear, whether it’s correct or not. As OpenAI says in a small disclaimer at the bottom of the app window: “ChatGPT can make mistakes.”

OpenAI releases ChatGPT app for Windows Read More »

man-learns-he’s-being-dumped-via-“dystopian”-ai-summary-of-texts

Man learns he’s being dumped via “dystopian” AI summary of texts

The evolution of bad news via texting

Spreen’s message is the first time we’ve seen an AI-mediated relationship breakup, but it likely won’t be the last. As the Apple Intelligence feature rolls out widely and other tech companies embrace AI message summarization, many people will probably be receiving bad news through AI summaries soon. For example, since March, Google’s Android Auto AI has been able to deliver summaries to users while driving.

If that sounds horrible, consider our ever-evolving social tolerance for tech progress. Back in the 2000s when SMS texting was still novel, some etiquette experts considered breaking up a relationship through text messages to be inexcusably rude, and it was unusual enough to generate a Reuters news story. The sentiment apparently extended to Americans in general: According to The Washington Post, a 2007 survey commissioned by Samsung showed that only about 11 percent of Americans thought it was OK to break up that way.

What texting looked like back in the day.

By 2009, as texting became more commonplace, the stance on texting break-ups began to soften. That year, ABC News quoted Kristina Grish, author of “The Joy of Text: Mating, Dating, and Techno-Relating,” as saying, “When Britney Spears dumped Kevin Federline I thought doing it by text message was an abomination, that it was insensitive and without reason.” Grish was referring to a 2006 incident with the pop singer that made headline news. “But it has now come to the point where our cell phones and BlackBerries are an extension of ourselves and our personality. It’s not unusual that people are breaking up this way so much.”

Today, with text messaging basically being the default way most adults communicate remotely, breaking up through text is commonplace enough that Cosmopolitan endorsed the practice in a 2023 article. “I can tell you with complete confidence as an experienced professional in the field of romantic failure that of these options, I would take the breakup text any day,” wrote Kayle Kibbe.

Who knows, perhaps in the future, people will be able to ask their personal AI assistants to contact their girlfriend or boyfriend directly to deliver a personalized break-up for them with a sensitive message that attempts to ease the blow. But what’s next—break-ups on the moon?

This article was updated at 3: 33 PM on October 10, 2024 to clarify that the ex-girlfriend’s full real name has not been revealed by the screenshot image.

Man learns he’s being dumped via “dystopian” AI summary of texts Read More »