cephalopods

research-roundup:-tattooed-tardigrades-and-splash-free-urinals

Research roundup: Tattooed tardigrades and splash-free urinals


April is the cruelest month

Also: The first live footage of a colossal baby squid; digitally unfolding an early medieval manuscript.

Credit: Schmidt Ocean Institute

It’s a regrettable reality that there is never time to cover all the interesting scientific stories we come across each month. In the past, we’ve featured year-end roundups of cool science stories we (almost) missed. This year, we’re experimenting with a monthly collection. April’s list includes new research on tattooed tardigrades, the first live image of a colossal baby squid, the digital unfolding of a recently discovered Merlin manuscript, and an ancient Roman gladiator whose skeleton shows signs of being gnawed by a lion.

Gladiator vs. lion?

Puncture injuries by large felid scavenging

Puncture injuries by large felid scavenging. Credit: Thompson et al., 2025/PLOS One/CC-BY 4.0

Popular depictions of Roman gladiators in combat invariably include battling not just human adversaries but wild animals. We know from surviving texts, imagery, and artifacts that such battles likely took place. But hard physical evidence is much more limited. Archaeologists have now found the first direct osteological evidence: the skeleton of a Roman gladiator who encountered a wild animal in the arena, most likely a lion, based on bite marks evident on the pelvic bone, according to a paper published in the journal PLoS ONE.

The skeleton in question was that of a young man, age 26 to 35, buried between 200–300 CE near what is now York, England, formerly the Roman city of Eboracum. It’s one of several such skeletons, mostly young men whose remains showed signs of trauma—hence the suggestion that it could be a gladiator burial site. “We used a method called structured light scanning [to study the skeleton],” co-author Tim Thompson of Maynooth University told Ars. “It’s a method of creating a 3D model using grids of light. It’s not like X-ray or CT, in that it only records the surface (not internal) features, but since it uses light and not X-rays etc, it is much safer, cheaper, and more portable. We have published a fair bit on this and shown its use in both archaeological and forensic contexts.”

The team compared the pelvic lesions found on the subject skeleton with bite marks from modern animal specimens and concluded that the young man had been bitten by a “large feline species,” most likely a lion scavenging on the body around the time of death. The young man was decapitated after death for unknown reasons, although this was a ritualistic practice for some people during the Roman period. While the evidence is technically circumstantial, “we are confident with our conclusions,” said Thompson. “We’ve adopted a multidisciplinary approach to address this issue and have drawn on methods from different subjects, too. Our use of contemporary comparison zoological material is really what gives us the confidence.”

PLoS ONE, 2025. DOI: 10.1371/journal.pone.0319847  (About DOIs).

Tattooed tardigrades

False-colored SEM image of the tardigrade after rehydration and fixation, with a magnified inset of the blue-boxed area.

False-colored SEM image of the tardigrade after rehydration and fixation. Credit: American Chemical Society

Tardigrades (aka “water bears”) are micro-animals that can survive in the harshest conditions: extreme pressure, extreme temperature, radiation, dehydration, starvation—even exposure to the vacuum of outer space. Scientists have exploited the robustness of these creatures to demonstrate a new ice lithography technique that can be used to essentially tattoo patterns at the nanoscale on living creatures. They described their method in a paper published in the journal Nano Letters.

Creating precision patterns on living organisms is challenging because the latter require very specific conditions in order to thrive, while fabrication techniques typically require harsh environments—the use of corrosive chemicals, for instance, vacuum conditions, or high radiation. So researchers at Westlake University tested their ice lithography on tardigrades in their dehydrated state (cryptobiosis). Once cooled, the tardigrades were coated with vaporized anisole, creating an ice layer. The team used an electron beam to etch patterns in that layer. Once the creatures were warmed back up, the parts of the ice layer that had not been exposed to the beam sublimated away, and the pattern was preserved on the tardigrade’s surface, even after the creatures were rehydrated.

Granted, only about 40 percent of the tardigrade test subjects survived the full procedure, but further improvements could improve that rate significantly. Once the technique is fully developed, it could enable the fabrication of nanoscale patterns for marking living organisms, such as tracking single cells as they develop or for the creation of sophisticated biosensors.

Nano Letters, 2025. DOI: 10.1021/acs.nanolett.5c00378  (About DOIs).

Holograms that can be grabbed

A 3D car is grabbed and rotated by a user.

A 3D car is grabbed and rotated by a user. Credit: Iñigo Ezcurdia

A volumetric display consists of scattering surfaces distributed throughout the same 3D space occupied by the resulting 3D image. Volumetric images can be viewed from any angle, as they seem to float in the air, but no existing commercial prototypes let the user directly interact with the holograms—until now. There is a new kind of volumetric display called FlexiVol that allows people to interact directly with 3D graphics displayed in mid-air. Elodie Bouzbib of the Public University of Navarra presented the research at the CHI conference on Human Factors in Computing Systems in Japan this month.

The key lies in a fast oscillating sheet known as a diffuser, onto which synchronous images are projected at high speed (2,880 images per second) and at different heights; human persistence of vision ensures that these images are perceived as true 3D objects. But the diffusers are usually made of rigid materials and hence pose a safety hazard should a user try to reach through and interact directly with the hologram; safety domes are usually employed because of this.

FlexiVol replaces the rigid diffuser with elastic bands that will not permanently deform or twist, distorting the 3D display, and has a different resonant frequency from the volumetric system. The team was inspired by the taxonomy of gestures used with 2D elastic displays and touch screens: swiping, for instance, or pinching in and out to make an image larger or smaller. They tested FlexiVol with a selection of users performing three sample tasks showcasing the ability to manipulate the 3D graphics, such as “grasping a cube between the thumb and index finger to rotate it, or simulating walking legs on a surface using the index and ring fingers,” said Bouzbib.

Look ma, no spashback!

A high-speed video depicting the tests used to measure the critical angle. Credit: Thurairajah et al., 2025

Men, are you tired of urine splashback when you use the loo? Scientists at the University of Waterloo have developed the optimal design for a splash-free urinal, dubbed the Nautilus (aka the “Nauti-loo”). We first covered this unusual research back in 2022, when the researchers presented preliminary results at a fluid dynamics conference. Their final findings have now formally appeared in a paper published in PNAS Nexus.

Per the authors, the key to optimal splash-free urinal design is the angle at which the pee stream strikes the porcelain surface; get a small enough angle, and there won’t be any splashback. Instead, you get a smooth flow across the surface, preventing droplets from flying out. (And yes, there is a critical threshold at which the urine stream switches from splashing to flowing smoothly, because phase transitions are everywhere—even in our public restrooms.) It turns out that dogs have already figured out the optimal angle as they lift their legs to pee, and when the team modeled this on a computer, they pegged the optimal angle for humans at 30 degrees.

The next step was to figure out a design that would offer that optimal urine stream angle for men across a wide range of heights. Instead of the usual shallow box shaped like a rectangle, they landed on the curved structure of the nautilus shell. They conducted simulated urine stream experiments with the prototypes, et voila! They didn’t observe a single droplet splashing back. By comparison, the other urinal designs produced as much as 50 times more splashback. The team did come up with a second design with the same optimal angle, dubbed the Cornucopia, but unlike the Nautilus, it does not fit a range of heights, limiting its usefulness.

PNAS Nexus, 2025. DOI: 10.1093/pnasnexus/pgaf087  (About DOIs).

Colossal baby squid

First confirmed live observation of the colossal squid in its natural habitat. Credit: Schmidt Ocean Institute

In 1925, scientists first described the colossal squid in a scientific paper, based on the discovery of arm fragments in the belly of a sperm whale. This species of squid is especially elusive because it prefers to stay in the deep ocean, although occasionally full-grown colossal squid have been found caught in trawl nets, for instance. One hundred years after its discovery, the colossal squid has now been filmed alive in its deep-ocean home environment for the first time by a team aboard Schmidt Ocean Institute’s R/V Falkor (too) in waters off the South Sandwich Islands.

Colossal squid can grow up to 23 feet long and weigh as much as 1,100 pounds and have distinctive hooks on the middle of their eight arms. Juvenile squid have transparent bodies. It was a baby squid just 30 centimeters long that the team captured on video at a depth of 1,968 feet (600 meters) during a 35-day expedition searching for new marine life; a remote submersible dubbed SuBastian took the footage. The scientists hope to eventually be able to capture an adult colossal squid on camera. The team also filmed the first confirmed living footage of a similar cephalopod species, the glacial glass squid, spotted in the Bellingshausen Sea near Antarctica in January.

Digitally unfolding a Merlin manuscript

Virtual opening of CUL’s Vanneck Merlin fragment.

In 2019, conservationists at Cambridge University discovered a fragment of an Arthurian medieval manuscript that had been repurposed as the cover of a land register document. Written between 1275 and 1315 CE, it was far too fragile to manually unfold, but the university library’s Cultural Heritage Imaging Laboratory has succeeded in digitally unfolding the fragment so that the text can be read for the first time, while keeping the original artifact intact as a testament to archival practices in 16th-century England. Their method could be used to noninvasively study fragile manuscript fragments held in other collections.

The team used a combination of CT scanning, multispectral imaging, and 3D modeling, as well as an array of mirrors, prisms, magnets, and other tools to photograph each section of the fragment. In this way they were able to reconstruct and virtually unfold the manuscript, revealing the text. Scholars had originally thought it was a text relating to Sir Gawain in Arthurian lore, but it turned out to be part of a French language sequel to the King Arthur legend called the Suite Vulgate du Merlin. There are only 40 known surviving manuscripts of this work. One section concerns Gawain’s victory over Saxon kings at the Battle of Cambenic; the other is a story of Merlin appearing in Arthur’s court disguised as a harpist on the Feast of the Assumption.

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

Research roundup: Tattooed tardigrades and splash-free urinals Read More »

octopus-suckers-inspire-new-tech-for-gripping-objects-underwater

Octopus suckers inspire new tech for gripping objects underwater

Over the last few years, Virginia Tech scientists have been looking to the octopus for inspiration to design technologies that can better grip a wide variety of objects in underwater environments. Their latest breakthrough is a special switchable adhesive modeled after the shape of the animal’s suckers, according to a new paper published in the journal Advanced Science.

“I am fascinated with how an octopus in one moment can hold something strongly, then release it instantly. It does this underwater, on objects that are rough, curved, and irregular—that is quite a feat,” said co-author and research group leader Michael Bartlett. “We’re now closer than ever to replicating the incredible ability of an octopus to grip and manipulate objects with precision, opening up new possibilities for exploration and manipulation of wet or underwater environments.”

As previously reported, there are several examples in nature of efficient ways to latch onto objects in underwater environments, per the authors. Mussels, for instance, secrete adhesive proteins to attach themselves to wet surfaces, while frogs have uniquely structured toe pads that create capillary and hydrodynamic forces for adhesion. But cephalopods like the octopus have an added advantage: The adhesion supplied by their grippers can be quickly and easily reversed, so the creatures can adapt to changing conditions, attaching to wet and dry surfaces.

From a mechanical engineering standpoint, the octopus has an active, pressure-driven system for adhesion. The sucker’s wide outer rim creates a seal with the object via a pressure differential between the chamber and the surrounding medium. Then muscles (serving as actuators) contract and relax the cupped area behind the rim to add or release pressure as needed.

There have been several attempts to mimic cephalopods when designing soft robotic grippers, for example. Back in 2022, Bartlett and his colleagues wanted to go one step further and recreate not just the switchable adhesion but also the integrated sensing and control. The result was Octa-Glove, a wearable system for gripping underwater objects that mimicked the arm of an octopus.

Improving the Octa-Glove

Grabbing and releasing underwater objects of different sizes and shapes with an octopus-inspired adhesive. Credit: Chanhong Lee and Michael Bartlett

For the adhesion, they designed silicone stalks capped with a pneumatically controlled membrane, mimicking the structure of octopus suckers. These adhesive elements were then integrated with an array of LIDAR optical proximity sensors and a micro-control for the real-time detection of objects. When the sensors detect an object, the adhesion turns on, mimicking the octopus’s nervous and muscular systems. The team used a neoprene wetsuit glove as a base for the wearable glove, incorporating the adhesive elements and sensors in each finger, with flexible pneumatic tubes inserted at the base of the adhesive elements.

Octopus suckers inspire new tech for gripping objects underwater Read More »

secrets-of-the-octopus-takes-us-inside-the-world-of-these-“aliens-on-earth”

Secrets of the Octopus takes us inside the world of these “aliens on Earth”

C is for Cephalopod —

Dr. Alex Schell on the surprising things we’re learning about these amazing creatures

A Day octopus octopus cyanea) parachutes her web over a coral head while Dr. Alex Schnell observes.

Enlarge / A Day octopus (Octopus cyanea) named Scarlet parachutes her web over a coral head while Dr. Alex Schnell observes.

National Geographic/Disney/Craig Parry

With Earth Day fast approaching once again, it’s time for another new documentary from National Geographic and Disney+:  Secrets of the Octopus. It’s the third in what has become a series, starting with the remarkable 2021 documentary Secrets of the Whales (narrated by Sigourney Weaver) and 2023’s Secrets of the Elephants (Natalie Portman as narrator). James Cameron served as producer on all three.

Secrets of the Octopus is narrated by Paul Rudd. Per the official synopsis:

Octopuses are like aliens on Earth: three hearts, blue blood and the ability to squeeze through a space the size of their eyeballs. But there is so much more to these weird and wonderful animals. Intelligent enough to use tools or transform their bodies to mimic other animals and even communicate with different species, the secrets of the octopus are more extraordinary than we ever imagined.

Each of the three episodes focuses on a specific unique feature of these fascinating creatures: “Shapeshifters,” “Masterminds,” and “Social Networks.” The animals were filmed in their natural habitats over 200 days and all that stunning footage is accompanied by thoughtful commentary by featured scientists.  One of those scientists is Dr. Alex Schnell,  a native Australian and self described storytelling who has worked at Macquarie University, the University of Cambridge, and the Marine Biological Laboratory, among other institutions. Her research focuses on the intelligence of marine animals, particularly cuttlefish and octopuses.

Ars caught up with Schnell to learn more.

Ars Technica: How did you become interested in studying octopuses?

Alex Schnell: I had this pivotal moment when I was young. I had the luxury of actually growing up on the beaches of Sydney so I would spend a lot of time in the water, in rock pools, looking at all the critters. When I was about five years old, I met my first octopus. It was such a monumental moment that opened up a completely different world for me. That’s the day I decided I wanted to be a marine biologist.

  • Alex Schnell prepares for a dive on the Great Barrier Reef

    National Geographic for Disney/Craig Parry

  • Alex Schnell SCUBA dives over a coral garden on the Great Barrier Reef, while an Australian research vessel floats on the surface above.

    National Geographic for Disney/Craig Parry

  • A Day octopus perched on corals on the Great Barrier Reef.

    National Geographic/Disney/Richard Woodgett

  • Director and DOP Adam Geiger operates a jib arm with Producer / Camera operator, Rory McGuinness, and Camera Assistant, Woody Spark.

    National Geographic for Disney/Annabel Robinson

  • Woody Spark preparing cameras and underwater housings with cinematographer Rory McGuinness.

    National Geographic for Disney/Harriet Spark

  • Alex Schnell observes a Mimic octopus (Thaumoctopus mimicus) while on a dive with wildlife photographer and local dive guide, Benhur Sarinda

    National Geographic for Disney/Craig Parry

  • A Mimic octopus, with striped skin patterning, stretches out all eight arms across black volcanic sand.

    National Geographic for Disney/Craig Parry

  • A Blue-ringed octopus (Hapalochlaena maculosa) displays bright blue rings, a warning that the venom in her bite is deadly.

    National Geographic

Ars Technica: What is the focus of your research?

Alex Schnell:   I’m a marine biologist that turned into a comparative psychologist—just a fancy word for studying the different minds of animals. What I’m really interested is how intelligence evolved, where and when. The octopus is the perfect candidate to answer some of these questions because they diverge from our own lineage over 550 million years ago. We share an ancestor that looked like a flat worm. So if the octopus shows glimmers of intelligence that we see in ourselves or in animals that are closely related to us, it reveals a lot about the patterns of evolution and how it evolved throughout the animal kingdom.

When you meet an octopus, you really get the sense that there is another being looking out at you. A few years ago, I worked with a team at London School of Economics to write a report reviewing the evidence of sentience in animals. Does the animal have the capacity to feel emotions? We found really strong evidence in octopuses and it ended up changing UK law. Now under UK law, we have to treat octopuses ethically and with compassion.

Ars Technica: One behavioral aspect the series explores is tool use by octopuses. I was struck by the scene where a little coconut octopus uses her clamshell both for shelter and as a shield. I’ve never seen that before.

Alex Schnell: Neither had I. Before we traveled to Indonesia on that shoot, I had read about that particular defensive tool use by the coconut octopus. This species will often be seen carrying around two halves of a coconut, like a mobile den or an RV home. And they use it as protection because they live in a very barren sandy landscape. So I was really excited to see that behavior unfold.

We got more than we bargained for, because in the clip that you mentioned, our coconut octopus was being threatened by this angry mantis shrimp. They pack a really powerful punch that’s been known to break through aquarium glass. And here we have this defenseless little octopus with no bones or anything. In that moment we witnessed her have this idea. She walked over to the shell and picked it up and dragged it back to her original spot and literally used it like a shield to fend off this angry mantis shrimp. She had imagined herself a shield.  I saw her get an idea, she imagined it, and she walked over it and used it. I was so blown away that I was screaming with excitement underwater.

  • Rory McGuinnes, operating an underwater jib arm to film a colorful coral reef on the Lembeh Strait.

    National Geographic for Disney/Adam Geiger

  • Woody Spark tests the controls for the underwater camera-and-slider system

    National Geographic for Disney/Adam Geiger

  • Local dive guides Reifani and Benhur Sarinda observe a Coconut octopus (Amphioctopus marginatus) sheltering between two clam shells.

    National Geographic for Disney/Adam Geiger

  • Woody Spark uses the underwater camera-and-slider system to film a Coconut octopus sheltering between clam shells.

    National Geographic for Disney/Adam Geiger

  • An 8-foot Giant Pacific octopus (Enteroctopus dofleini) rests on the arms of tech diver and octopus enthusiast, Krystal Janicki, on a dive in the shallow waters off Vancouver Island.

    National Geographic for Disney/Maxwel Hohn

  • A Giant Pacific octopus crawls over the sandy seafloor in shallow waters

    National Geographic for Disney/Maxwel Hohn

  • Dr. C.E. O’Brien observes a resting Island octopus (Octopus insularis) on a dive in Turks and Caicos.

    National Geographic for Disney/Adam Geiger

Ars Technica: At one point in the series you celebrate having a “conversation” with an octopus. How do octopuses communicate?  

Alex Schnell: Octopuses generally communicate with changes to their skin. They can change the color and the texture of their skin in the blink of an eye, and they can also change their posture. What we’ve found with one particular species is that they have cross-species communication, so they collaboratively hunt with some reef fish. Again, I had only read about this behavior until I had a chance to see it in person.

I had this kind of playful idea while I was down there with a Day octopus named Scarlet, who was allowing me to follow her on a lot of her hunts. Because I was so close to her, I noticed she was missing little crabs here and there. Normally her fish hunting partner will do a head stand to point to where the missed food is. I thought, I wonder what’s going to happen if I just point at it, not expecting anything. To my astonishment, she responded and swum right over and looked where I had pointed.

So that’s what I mean by having a conversation with an octopus. I can’t change color sadly, but it’s as if she was responding to my pointing, my “referential signaling,” which is incredible because this is kind of what we see in humans and chimpanzees: this development of communication before language develops. Here we have this octopus responding to a human pointing.

Ars Technica: Scarlet actually reached out her little tentacle to you on multiple occasions; she seemed to recognize you and accept you. 

Alex Schnell: I had had those moments before, the ET moment where you get to meet an octopus, and I’ve spoken to other avid divers and people who have a love for octopuses that have had similar experiences. The really special thing with this relationship that I had with Scarlet is that we were able to develop it over weeks and months. Every time I would return to her, she would appear to recognize me quickly and let me back into her world.

What continues to blow me away is that Scarlet grew to trust me really quickly. She reached out and shook my hand after 30 minutes of me watching her, and she let me swim alongside her as she hunted. This is a creature with no skeleton, no shell, no teeth, no claws to protect itself. And despite that extreme vulnerability, she quickly let her guard down. It’s like she was driven by curiosity and this need to reach out and connect, even with an alien creature like me.

Ars Technica: I was surprised to learn that octopuses have such short lifespans. 

Alex Schnell: A lot people ask me if they lived longer, would they take over the world? Maybe. It’s life in the fast lane. They are essentially born as orphans because they don’t have any parents or siblings to guide them. They just drift off. They’re loners for most of their lives and they teach themselves. Everything is driven by this intense curiosity to learn. I think that’s why a lot of people have had these incredible moments with octopuses because even the fear or the vulnerability that they might feel is outweighed by a curiosity to interact.

  • Alex Schnell on the surface in full SCUBA gear.

    National Geographic/Harriet Spark

  • A Coconut octopus pokes an eye out from between partially buried clam shells. Her powerful suckers hold the two shells together for protection from passing predators.

    National Geographic for Disney/Craig Parry

  • Alex Schnell and Benhur Sarinda observe a Coconut octopus walking across the seafloor with clam shells held underneath her web.

    National Geographic for Disney/Craig Parry)

  • A tiny Coconut octopus reaches out to touch Alex Schnell’s hand.

    National Geographic for Disney/Craig Parry

  • An Algae octopus (Abdopus aculeatus) foraging amongst the algae and seagrass in Bunaken Marine Park.

    National Geographic/Annabel Robinson

  • Alex Schnell observing a Southern keeled octopus (Octopus berrima) on a night dive in Port Phillip Bay

    National Geographic

  • A Dorado octopus mother group with eggs

    Schmidt Ocean Institute

Ars Technica: Do you find yourself having to be on guard about anthropomorphizing these amazing creatures a bit too much? 

Alex Schnell: I think there’s a fine balance. As a trained comparative psychologist, we are taught to be really careful not to anthropomorphize and attribute human traits onto the animals that we see or that we work with. At the same time, I think that we’ve moved too far into a situation that Frans de Waal called “anthro-denialism.” Traits didn’t just sprout up in the human species. They have an evolutionary history, and while they might not be exactly the same in other animals, there are similarities. So sometimes we need to call it what it is. One of der Waal’s examples was researchers who described chimpanzees kissing as “mouth-to-mouth contact” because they didn’t want to anthropomorphize it. Come on guys, they’re kissing.

We do strive to see human traits in other animals. We watched cartoons growing up, we had pets around us, so it’s really hard not to. Our job is as comparative psychologists is to find really strong evidence for the similarities and the differences between the different minds of the animals that we share our planet with.

Ars Technica: What were some of the highlights for you, filming this documentary series? 

Alex Schnell: It was challenging in the sense that when the production team first approached me, I was 38 weeks pregnant. So I went out into the field with a five-month-old baby. I was sleep-deprived, trying to go diving and also be on camera. I had worked on natural history films before, but always on the other side of the camera. So it was a steep learning curve.

But it was such a rewarding experience to be able to have the luxury of time to be out with these animals. I had no project because I was on maternity leave. Sometimes when you’re part of a project, you can get tunnel vision.  “I’m going to see this particular behavior and that’s what I’m focusing on.” But I could be completely mindful in the moment with my time with octopuses and get to see how they interact in their natural environment. It opens up this incredible secret world that they have.  I was seeing things that, yes, I’d read about some of them, but some I’d never heard of before. I think each episode in this series reveals secrets that will take your breath away.

Ars Technica:  What is next for you?

Alex Schnell:  I’m working on a project called One World, Many Minds. What this project strives to do is accentuate that, yes, we are one world, but there are many minds that make up our collective existence. I really want to showcase the minds of animals like the octopus or the cuttlefish or a big grouper, and show that we have traits that we can recognize, that we can connect with. That will help remove a barrier of otherness, and highlight our shared vulnerability and interconnectedness with animals.

Secrets of the Octopus premieres on Disney+ and Hulu on April 22, 2024.

Secrets of the Octopus official trailer.

Secrets of the Octopus takes us inside the world of these “aliens on Earth” Read More »