Biomechanics

high-speed-imaging-and-ai-help-us-understand-how-insect-wings-work

High-speed imaging and AI help us understand how insect wings work

Black and white images of a fly with its wings in a variety of positions, showing the details of a wing beat.

Enlarge / A time-lapse showing how an insect’s wing adopts very specific positions during flight.

Florian Muijres, Dickinson Lab

About 350 million years ago, our planet witnessed the evolution of the first flying creatures. They are still around, and some of them continue to annoy us with their buzzing. While scientists have classified these creatures as pterygotes, the rest of the world simply calls them winged insects.

There are many aspects of insect biology, especially their flight, that remain a mystery for scientists. One is simply how they move their wings. The insect wing hinge is a specialized joint that connects an insect’s wings with its body. It’s composed of five interconnected plate-like structures called sclerites. When these plates are shifted by the underlying muscles, it makes the insect wings flap.

Until now, it has been tricky for scientists to understand the biomechanics that govern the motion of the sclerites even using advanced imaging technologies. “The sclerites within the wing hinge are so small and move so rapidly that their mechanical operation during flight has not been accurately captured despite efforts using stroboscopic photography, high-speed videography, and X-ray tomography,” Michael Dickinson, Zarem professor of biology and bioengineering at the California Institute of Technology (Caltech), told Ars Technica.

As a result, scientists are unable to visualize exactly what’s going on at the micro-scale within the wing hinge as they fly, preventing them from studying insect flight in detail. However, a new study by Dickinson and his team finally revealed the working of sclerites and the insect wing hinge. They captured the wing motion of fruit flies (Drosophila melanogaster) analyzing 72,000 recorded wing beats using a neural network to decode the role individual sclerites played in shaping insect wing motion.

Understanding the insect wing hinge

The biomechanics that govern insect flight are quite different from those of birds and bats. This is because wings in insects didn’t evolve from limbs. “In the case of birds, bats, and pterosaurs we know exactly where the wings came from evolutionarily because all these animals fly with their forelimbs. They’re basically using their arms to fly. In insects, it’s a completely different story. They evolved from six-legged organisms and they kept all six legs. However, they added flapping appendages to the dorsal side of their body, and it is a mystery as to where those wings came from,” Dickinson explained.

Some researchers suggest that insect wings came from gill-like appendages present in ancient aquatic arthropods. Others argue that wings originated from “lobes,” special outgrowths found on the legs of ancient crustaceans, which were ancestors of insects. This debate is still ongoing, so its evolution can’t tell us much about how the hinge and the sclerites operate.

Understanding the hinge mechanics is crucial because this is what makes insects efficient flying creatures. It enables them to fly at impressive speeds relative to their body sizes (some insects can fly at 33 mph) and to demonstrate great maneuverability and stability while in flight.

“The insect wing hinge is arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world,” according to the study authors.

However, imaging the activity of four of the five sclerites that form the hinge has been impossible due to their size and the speeds at which they move. Dickinson and his team employed a multidisciplinary approach to overcome this challenge. They designed an apparatus equipped with three high-speed cameras that recorded the activity of tethered fruit flies at 15,000 frames per second using infrared light.

They also used a calcium-sensitive protein to track changes in the activity of the steering muscles of the insects as they flew (calcium helps trigger muscle contractions). “We recorded a total of 485 flight sequences from 82 flies. After excluding a subset of wingbeats from sequences when the fly either stopped flying or flew at an abnormally low wingbeat frequency, we obtained a final dataset of 72,219 wingbeats,” the researchers note.

Next, they trained a machine-learning-based convolutional neural network (CNN) using 85 percent of the dataset. “We used the CNN model to investigate the transformation between muscle activity and wing motion by performing a set of virtual manipulations, exploiting the network to execute experiments that would be difficult to perform on actual flies,” they explained.

In addition to the neural network, they also developed an encoder-decoder neural network (an architecture used in machine learning) and fed it data related to steering muscle activity. While the CNN model could predict wing motion, the encoder/decoder could predict the action of individual sclerite muscles during the movement of the wings. Now, it was time to check whether the data they predicted was accurate.

High-speed imaging and AI help us understand how insect wings work Read More »

study:-the-best-free-throw-shooters-share-these-biomechanical-traits

Study: The best free-throw shooters share these biomechanical traits

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2020, each day from December 25 through January 5. Today: Using markerless motion capture technology to determine what makes the best free throw shooters in basketball.

Markerless motion-capture technology shows the biomechanics of free-throw shooters. Credit: Jayhawk Athletic Peformance Laboratory.

Basketball season is in full swing, and in a close game, the team that makes the highest percentage of free throws can often eke out the win. A better understanding of the precise biomechanics of the best free-throw shooters could translate into critical player-performance improvement. Researchers at the University of Kansas in Lawrence used markerless motion-capture technology to do just that, reporting their findings in an August paper published in the journal Frontiers in Sports and Active Living.

“We’re very interested in analyzing basketball shooting mechanics and what performance parameters differentiate proficient from nonproficient shooters,” said co-author Dimitrije Cabarkapa, director of the Jayhawk Athletic Performance Laboratory at the University of Kansas. “High-speed video analysis is one way that we can do that, but innovative technological tools such as markerless motion capture systems can allow us to dig even deeper into that. In my opinion, the future of sports science is founded on using noninvasive and time-efficient testing methodologies.”

Scientists are sports fans like everyone else, so it’s not surprising that a fair amount of prior research has gone into various aspects of basketball. For instance, there has been considerable debate on whether the “hot hand” phenomenon in basketball is a fallacy or not—that is, when players make more shots in a row than statistics suggest they should. A 1985 study proclaimed it a fallacy, but more recent mathematical analysis (including a 2015 study examining the finer points of the law of small numbers) from other researchers has provided some vindication that such streaks might indeed be a real thing, although it might only apply to certain players.

Some 20 years ago, Larry Silverberg and Chia Tran of North Carolina State University developed a method to computationally simulate the trajectories of millions of basketballs on the computer and used it to examine the mathematics of the free throw. Per their work, in a perfect free throw, the basketball has a 3 hertz backspin as it leaves the player’s fingertips, the launch is about 52 degrees, and the launch speed is fairly slow, ensuring the greatest probability of making the basket. Of those variables launch speed is the most difficult for players to control. The aim point also matters: Players should aim at the back of the rim, which is more forgiving than the front.

There was also a 2021 study by Malaysian scientists that analyzed the optimal angle of a basketball free throw, based on data gleaned from 30 NBA players. They concluded that a player’s height is inversely proportional to the initial velocity and optimal throwing angle, and that the latter is directly proportional to the time taken for a ball to reach its maximum height.

Graphic showing the contrast in release angles between proficient and nonproficient shooters.

Enlarge / Graphic showing the contrast in release angles between proficient and nonproficient shooters.

Jayhawk Athletic Performance Laboratory.

Cabarkapa’s lab has been studying basketball players’ performance for several years now, including how eating breakfast (or not) impacts shooting performance, and what happens to muscles when players overtrain. They published a series of studies in 2022 assessing the effectiveness of the most common coaching cues, like “bend your knees,” “tuck your elbow in,” or “release the ball as high as possible.” For one study, Cabarkapa et al. analyzed high-definition video of free-throw shooters for kinematic differences between players who excel at free throws and those who don’t. The results pointed to greater flexion in hip, knee, and angle joints resulting in lower elbow placement when shooting.

Yet they found no kinematic differences in shots that proficient players made and those they missed, so the team conducted a follow-up study employing a 3D motion-capture system. This confirmed that greater knee and elbow flexion and lower elbow placement were critical factors. There was only one significant difference between made and missed free-throw shots: positioning the forearm almost parallel with an imaginary lateral axis.

Study: The best free-throw shooters share these biomechanical traits Read More »

getting-to-the-bottom-of-how-red-flour-beetles-absorb-water-through-their-butts

Getting to the bottom of how red flour beetles absorb water through their butts

On the third day of Christmas —

A unique group of cells pumps water into the kidneys to help harvest moisture from the air.

Who <em>doesn’t</em> thrill to the sight of a microscopic cross-section of a beetle’s rectum? You’re welcome.” src=”https://cdn.arstechnica.net/wp-content/uploads/2023/03/beetle-butt-TOP-800×536.jpg”></img><figcaption>
<p><a data-height=Enlarge / Who doesn’t thrill to the sight of a microscopic cross-section of a beetle’s rectum? You’re welcome.

Kenneth Veland Halberg

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2023, each day from December 25 through January 5. Today: red flour beetles can use their butts to suck water from the air, helping them survive in extremely dry environments. Scientists are honing in on the molecular mechanisms behind this unique ability.

The humble red flour beetle (Tribolium castaneum) is a common pantry pest feeding on stored grains, flour, cereals, pasta, biscuits, beans, and nuts. It’s a remarkably hardy creature, capable of surviving in harsh arid environments due to its unique ability to extract fluid not just from grains and other food sources, but also from the air. It does this by opening its rectum when the humidity of the atmosphere is relatively high, absorbing moisture through that opening and converting it into fluid that is then used to hydrate the rest of the body.

Scientists have known about this ability for more than a century, but biologists are finally starting to get to the bottom (ahem) of the underlying molecular mechanisms, according to a March paper published in the Proceedings of the National Academies of Science. This will inform future research on how to interrupt this hydration process to better keep red flour beetle populations in check, since they are highly resistant to pesticides. They can also withstand even higher levels of radiation than the cockroach.

There are about 400,000 known species of beetle roaming the planet although scientists believe there could be well over a million. Each year, as much as 20 percent of the world’s grain stores are contaminated by red flour beetles, grain weevils, Colorado potato beetles, and confused flour beetles, particularly in developing countries. Red flour beetles in particular are a popular model organism for scientific research on development and functional genomics. The entire genome was sequenced in 2008, and the beetle shares between 10,000 and 15,000 genes with the fruit fly (Drosophila), another workhorse of genetics research. But the beetle’s development cycle more closely resembles that of other insects by comparison.

Food security in developing nations is particularly affected by animal species like the red flour beetle which has specialized in surviving in extremely dry environments, granaries included, for thousands of years.

Enlarge / Food security in developing nations is particularly affected by animal species like the red flour beetle which has specialized in surviving in extremely dry environments, granaries included, for thousands of years.

Kenneth Halberg

The rectums of most mammals and insects absorb any remaining nutrients and water from the body’s waste products prior to defecation. But the red flour beetle’s rectum is a model of ultra-efficiency in that regard. The beetle can generate extremely high salt concentrations in its kidneys, enabling it to extract all the water from its own feces and recycle that moisture back into its body.

“A beetle can go through an entire life cycle without drinking liquid water,” said co-author Kenneth Veland Halberg, a biologist at the University of Copenhagen. “This is because of their modified rectum and closely applied kidneys, which together make a multi-organ system that is highly specialized in extracting water from the food that they eat and from the air around them. In fact, it happens so effectively that the stool samples we have examined were completely dry and without any trace of water.” The entire rectal structure is encased in a perinephric membrane.

Halberg et al. took took scanning electron microscopy images of the beetle’s rectal structure. They also took tissue samples and extracted RNA from lab-grown red flour beetles, then used a new resource called BeetleAtlas for their gene expression analysis, hunting for any relevant genes.

One particular gene was expressed sixty times more in the rectum than any other. Halberg and his team eventually honed in a group of secondary cells between the beetle’s kidneys and circulatory system called leptophragmata. This finding supports prior studies that suggested these cells might be relevant since they are the only cells that interrupt the perinephric membrane, thereby enabling critical transport of potassium chloride. Translation: the cells pump salts into the kidneys to better harvest moisture from its feces or from the air.

Model of the beetle's inside and how it extracts water from the air.

Enlarge / Model of the beetle’s inside and how it extracts water from the air.

Kenneth Halberg

The next step is to build on these new insights to figure out how to interrupt the beetle’s unique hydration process at the molecular level, perhaps by designing molecules that can do so. Those molecules could then be incorporated into more eco-friendly pesticides that target the red flour beetle and similar pests while not harming more beneficial insects like bees.

“Now we understand exactly which genes, cells and molecules are at play in the beetle when it absorbs water in its rectum. This means that we suddenly have a grip on how to disrupt these very efficient processes by, for example, developing insecticides that target this function and in doing so, kill the beetle,” said Halberg. “There is twenty times as much insect biomass on Earth than that of humans. They play key roles in most food webs and have a huge impact on virtually all ecosystems and on human health. So, we need to understand them better.”

DOI: PNAS, 2023. 10.1073/pnas.2217084120  (About DOIs).

Getting to the bottom of how red flour beetles absorb water through their butts Read More »