Biology

an-small-microbial-ecosystem-has-formed-on-the-international-space-station

An small microbial ecosystem has formed on the International Space Station

“One of the more similar environments to the ISS was in the isolation dorms on the UCSD campus during the COVID-19 pandemic. All surfaces were continuously sterilized, so that microbial signatures would be erased by the time another person would show up,” Benitez said. So, one of the first solutions to the ISS microbial diversity problem he and his colleagues suggested was that they perhaps should ease up on sterilizing the station so much.

“The extensive use of disinfection chemicals might not be the best approach to maintaining a healthy microbial environment, although there is certainly plenty of research to be conducted,” Benitez said.

Space-faring gardens

He suggested that introducing microbes that are beneficial to human health might be better than constantly struggling to wipe out all microbial life on the station. And while some modules up there do need to be sterilized, keeping some beneficial microbes alive could be achieved by designing future spacecraft in a way that accounts for how the microbes spread.

“We found that microbes in modules with little human activity tend to stay in those modules without spreading. When human activity is high in a module, then the microbes spread to adjacent modules,”  Zhao said. She said spacecraft could be designed to put modules with high human activity at one end and the modules with little to no human activity at the opposite end, so the busy modules don’t contaminate the ones that need to remain sterile. “We are of course talking as microbiologists and chemists—perhaps spacecraft engineers have more pressing reasons to put certain modules at certain spots,” Zhao said. “These are just preliminary ideas.”

But what about crewed deep space missions to Mars and other destinations in the Solar System? Should we carefully design the microbial composition beforehand, plant the microbes on the spacecraft and hope this artificial, closed ecosystem will work for years without any interventions from Earth?

“I’d take a more holistic ecosystem approach,” Benitez said. He imagines in the future we could build spacecraft and space stations hosting entire gardens with microbes that would interact with plants, pollinators, and animals to create balanced, self-sustaining ecosystems. “We’d not only need to think about sending the astronauts and the machines they need to function, but also about all other lifeforms we will need to send along with them,” Benitez said

Cell, 2025. DOI: 10.1016/j.cell.2025.01.039

An small microbial ecosystem has formed on the International Space Station Read More »

did-the-snowball-earth-give-complex-life-a-boost?

Did the snowball Earth give complex life a boost?

Life is complex

But when new minerals made their way to the water, what did they actually do? Cycle throughout the bottom of the ocean, delivering new elements to previously barren locations and providing energy for microbial life. At the end of the Cryogenic, these early lifeforms appear to have gotten gradually more complex, paving the way for the first known multicellular life in the ensuing Ediacaran.

“Any time there’s a really radical environmental shift, we know that’s an interesting time for evolution,” says Chris Kempes, a theoretical biophysicist at the Sante Fe Institute who was not involved in the research. For example, when temperatures drop or less sunlight is available, organisms’ speed and metabolic rates generally slow down, creating new pressures on life, Kempes’ research has found. Halverson thinks the extreme habitats that life had to endure during the snowballs played more of a role in shaping evolution than the nutrient flushes from glaciers.

Even so, studies like Kirkland’s that try to understand how nutrients and energy availability changed throughout history are “the key to understanding when and why there are major evolutionary transitions,” Kempes says.

To determine what other minerals may have been key players in the ancient oceans, Kirkland hopes to look at rocks called apatites, which contain oxygen and other elements like strontium and phosphorus. However, these break down much easier than zircon-rich rocks, meaning they are less stable through long stretches of time.

Though the global changes of the Cryogenic happened eons ago, Kirkland sees parallels with the wide-scale climate changes of today. “The atmosphere, the land, and the oceans are all interconnected,” he says. “Understanding these [ancient] cycles gives us information about how more modern cycles on the planet may work.”

Geology, 2025.  DOI:  10.1130/G52887.1

Hannah Richter is a freelance science journalist and graduate of MIT’s Graduate Program in Science Writing. She primarily covers environmental science and astronomy. 

Did the snowball Earth give complex life a boost? Read More »

flashy-exotic-birds-can-actually-glow-in-the-dark

Flashy exotic birds can actually glow in the dark

Found in the forests of Papua New Guinea, Indonesia, and Eastern Australia, birds of paradise are famous for flashy feathers and unusually shaped ornaments, which set the standard for haute couture among birds. Many use these feathers for flamboyant mating displays in which they shape-shift into otherworldly forms.

As if this didn’t attract enough attention, we’ve now learned that they also glow in the dark.

Biofluorescent organisms are everywhere, from mushrooms to fish to reptiles and amphibians, but few birds have been identified as having glowing feathers. This is why biologist Rene Martin of the University of Nebraska-Lincoln wanted to investigate. She and her team studied a treasure trove of specimens at the American Museum of Natural History, which have been collected since the 1800s, and found that 37 of the 45 known species of birds of paradise have feathers that fluoresce.

The glow factor of birds of paradise is apparently important for mating displays. Despite biofluorescence being especially prominent in males, attracting a mate might not be all it is useful for, as these birds might also use it to signal to each other in other ways and sometimes even for camouflage among the light and shadows.

“The current very limited number of studies reporting fluorescence in birds suggests this phenomenon has not been thoroughly investigated,” the researchers said in a study that was recently published in Royal Society Open Science.

Glow-up

How do they get that glow? Biofluorescence is a phenomenon that happens when shorter, high-energy wavelengths of light, meaning UV, violet, and blue, are absorbed by an organism. The energy then gets re-emitted at longer, lower-energy wavelengths—greens, yellows, oranges, and reds. The feathers of birds of paradise contain fluorophores, molecules that undergo biofluorescence. Specialized filters in the light-sensitive cells of their eyes make their visual system more sensitive to biofluorescence.

Flashy exotic birds can actually glow in the dark Read More »

study:-cuttlefish-adapt-camouflage-displays-when-hunting-prey

Study: Cuttlefish adapt camouflage displays when hunting prey

Crafty cuttlefish employ several different camouflaging displays while hunting their prey, according to a new paper published in the journal Ecology, including mimicking benign ocean objects like a leaf or coral, or flashing dark stripes down their bodies. And individual cuttlefish seem to choose different preferred hunting displays for different environments.

It’s well-known that cuttlefish and several other cephalopods can rapidly shift the colors in their skin thanks to that skin’s unique structure. As previously reported, squid skin is translucent and features an outer layer of pigment cells called chromatophores that control light absorption. Each chromatophore is attached to muscle fibers that line the skin’s surface, and those fibers, in turn, are connected to a nerve fiber. It’s a simple matter to stimulate those nerves with electrical pulses, causing the muscles to contract. And because the muscles are pulling in different directions, the cell expands, along with the pigmented areas, changing the color. When the cell shrinks, so do the pigmented areas.

Underneath the chromatophores, there is a separate layer of iridophores. Unlike the chromatophores, the iridophores aren’t pigment-based but are an example of structural color, similar to the crystals in the wings of a butterfly, except a squid’s iridophores are dynamic rather than static. They can be tuned to reflect different wavelengths of light. A 2012 paper suggested that this dynamically tunable structural color of the iridophores is linked to a neurotransmitter called acetylcholine. The two layers work together to generate the unique optical properties of squid skin.

And then there are leucophores, which are similar to the iridophores, except they scatter the full spectrum of light, so they appear white. They contain reflectin proteins that typically clump together into nanoparticles so that light scatters instead of being absorbed or directly transmitted. Leucophores are mostly found in cuttlefish and octopuses, but there are some female squid of the genus Sepioteuthis that have leucophores that they can “tune” to only scatter certain wavelengths of light. If the cells allow light through with little scattering, they’ll seem more transparent, while the cells become opaque and more apparent by scattering a lot more light.

Scientists learned in 2023 that the process by which cuttlefish generate their camouflage patterns is significantly more complex than scientists previously thought. Specifically, cuttlefish readily adapted their skin patterns to match different backgrounds, whether natural or artificial. And the creatures didn’t follow the same transitional pathway every time, often pausing in between. That means that contrary to prior assumptions, feedback seems to be critical to the process, and the cuttlefish were correcting their patterns to match the backgrounds better.

Study: Cuttlefish adapt camouflage displays when hunting prey Read More »

ai-used-to-design-a-multi-step-enzyme-that-can-digest-some-plastics

AI used to design a multi-step enzyme that can digest some plastics

And it worked. Repeating the same process with an added PLACER screening step boosted the number of enzymes with catalytic activity by over three-fold.

Unfortunately, all of these enzymes stalled after a single reaction. It turns out they were much better at cleaving the ester, but they left one part of it chemically bonded to the enzyme. In other words, the enzymes acted like part of the reaction, not a catalyst. So the researchers started using PLACER to screen for structures that could adopt a key intermediate state of the reaction. This produced a much higher rate of reactive enzymes (18 percent of them cleaved the ester bond), and two—named “super” and “win”—could actually cycle through multiple rounds of reactions. The team had finally made an enzyme.

By adding additional rounds alternating between structure suggestions using RFDiffusion and screening using PLACER, the team saw the frequency of functional enzymes increase and eventually designed one that had an activity similar to some produced by actual living things. They also showed they could use the same process to design an esterase capable of digesting the bonds in PET, a common plastic.

If that sounds like a lot of work, it clearly was—designing enzymes, especially ones where we know of similar enzymes in living things, will remain a serious challenge. But at least much of it can be done on computers rather than requiring someone to order up the DNA that encodes the enzyme, getting bacteria to make it, and screening for activity. And despite the process involving references to known enzymes, the designed ones didn’t share a lot of sequences in common with them. That suggests there should be added flexibility if we want to design one that will react with esters that living things have never come across.

I’m curious about what might happen if we design an enzyme that is essential for survival, put it in bacteria, and then allow it to evolve for a while. I suspect life could find ways of improving on even our best designs.

Science, 2024. DOI: 10.1126/science.adu2454  (About DOIs).

AI used to design a multi-step enzyme that can digest some plastics Read More »

parrots-struggle-when-told-to-do-something-other-than-mimic-their-peers

Parrots struggle when told to do something other than mimic their peers

There have been many studies on the capability of non-human animals to mimic transitive actions—actions that have a purpose. Hardly any studies have shown that animals are also capable of intransitive actions. Even though intransitive actions have no particular purpose, imitating these non-conscious movements is still thought to help with socialization and strengthen bonds for both animals and humans.

Zoologist Esha Haldar and colleagues from the Comparative Cognition Research group worked with blue-throated macaws, which are critically endangered, at the Loro Parque Fundación in Tenerife. They trained the macaws to perform two intransitive actions, then set up a conflict: Two neighboring macaws were asked to do different actions.

What Haldar and her team found was that individual birds were more likely to perform the same intransitive action as a bird next to them, no matter what they’d been asked to do. This could mean that macaws possess mirror neurons, the same neurons that, in humans, fire when we are watching intransitive movements and cause us to imitate them (at least if these neurons function the way some think they do).

But it wasn’t on purpose

Parrots are already known for their mimicry of transitive actions, such as grabbing an object. Because they are highly social creatures with brains that are large relative to the size of their bodies, they made excellent subjects for a study that gauged how susceptible they were to copying intransitive actions.

Mirroring of intransitive actions, also called automatic imitation, can be measured with what’s called a stimulus-response-compatibility (SRC) test. These tests measure the response time between seeing an intransitive movement (the visual stimulus) and mimicking it (the action). A faster response time indicates a stronger reaction to the stimulus. They also measure the accuracy with which they reproduce the stimulus.

Until now, there have only been three studies that showed non-human animals are capable of copying intransitive actions, but the intransitive actions in these studies were all by-products of transitive actions. Only one of these focused on a parrot species. Haldar and her team would be the first to test directly for animal mimicry of intransitive actions.

Parrots struggle when told to do something other than mimic their peers Read More »

bonobos-recognize-when-humans-are-ignorant,-try-to-help

Bonobos recognize when humans are ignorant, try to help

A lot of human society requires what’s called a “theory of mind”—the ability to infer the mental state of another person and adjust our actions based on what we expect they know and are thinking. We don’t always get this right—it’s easy to get confused about what someone else might be thinking—but we still rely on it to navigate through everything from complicated social situations to avoid bumping into people on the street.

There’s some mixed evidence that other animals have a limited theory of mind, but there are alternate interpretations for most of it. So two researchers at Johns Hopkins, Luke Townrow and Christopher Krupenye, came up with a way of testing whether some of our closest living relatives, the bonobos, could infer the state of mind of a human they were cooperating with. The work clearly showed that the bonobos could tell when their human partner was ignorant.

Now you see it…

The experimental approach is quite simple, and involves a setup familiar to street hustlers: a set of three cups, with a treat placed under one of them. Except in this case, there’s no sleight-of-hand in that the chimp can watch as one experimenter places the treat under a cup, and all of the cups remain stationary throughout the experiment.

To get the treat, however, requires the cooperation of a second human experimenter. That person has to identify the right cup, then give the treat under it to the bonobo. In some experiments, this human can watch the treat being hidden through a transparent partition, and so knows exactly where it is. In others, however, the partition is solid, leaving the human with no idea of which cup might be hiding the food.

This setup means that the bonobo will always know where the food is and will also know whether the human could potentially have the same knowledge.

The bonobos were first familiarized with the setup and got to experience their human partner taking the treat out from under the cup and giving it to them. Once they were familiar with the process, they watched the food being hidden without any partner present, which demonstrated they rarely took any food-directed actions without a good reason to do so. In contrast, when their human partner was present, they were about eight times more likely to point to the cup with the food under it.

Bonobos recognize when humans are ignorant, try to help Read More »

let-us-spray:-river-dolphins-launch-pee-streams-into-air

Let us spray: River dolphins launch pee streams into air

According to Amazonian folklore, the area’s male river dolphins are shapeshifters (encantade), transforming at night into handsome young men who seduce and impregnate human women. The legend’s origins may lie in the fact that dolphins have rather human-like genitalia. A group of Canadian biologists didn’t spot any suspicious shapeshifting behavior over the four years they spent monitoring a dolphin population in central Brazil, but they did document 36 cases of another human-like behavior: what appears to be some sort of cetacean pissing contest.

Specifically, the male dolphins rolled over onto their backs, displayed their male members, and launched a stream of urine as high as 3 feet into the air. This usually occurred when other males were around, who seemed fascinated in turn by the arching streams of pee, even chasing after them with their snouts. It’s possibly a form of chemical sensory communication and not merely a need to relieve themselves, according to the biologists, who described their findings in a paper published in the journal Behavioral Processes. As co-author Claryana Araújo-Wang of CetAsia Research Group in Ontario, Canada, told New Scientist, “We were really shocked, as it was something we had never seen before.”

Spraying urine is a common behavior in many animal species, used to mark territory, defend against predators, communicate with other members of one’s species, or as a means of mate selection since it has been suggested that the chemicals in the urine carry useful information about physical health or social dominance.

Let us spray: River dolphins launch pee streams into air Read More »

stem-cells-used-to-partially-repair-damaged-hearts

Stem cells used to partially repair damaged hearts

When we developed the ability to convert various cells into a stem cell, it held the promise of an entirely new type of therapy. Rather than getting the body to try to fix itself with its cells or deal with the complications of organ transplants, we could convert a few adult cells to stem cells and induce them to form any tissue in the body. We could potentially repair or replace tissues with an effectively infinite supply of a patient’s own cells.

However, the Nobel Prize for induced stem cells was handed out over a decade ago, and the therapies have been slow to follow. But a group of German researchers is now describing tests in primates of a method of repairing the heart using new muscle generated from stem cells. The results are promising, if not yet providing everything that we might hope for. But they’ve been enough to start clinical trials, and similar results are being seen in humans.

Heart problems

The heart contains a lot of specialized tissues, including those that form blood vessels or specialize in conducting electrical signals. But the key to the heart is a form of specialized muscle cell, called a cardiomyocyte. Once the heart matures, the cardiomyocytes stop dividing, meaning that you end up with a fixed population. Any damage to the heart due to injury or infection does not get repaired, meaning damage will be cumulative.

This is especially problematic in cases of blocked blood vessels, which can repeatedly starve large areas of the heart of oxygen and nutrients, killing the cardiomyocytes there. This leads to a reduction in cardiac function and can ultimately result in death.

It turns out, however, that it’s relatively easy to convert induced pluripotent stem cells (IPSC, with pluripotent meaning they can form any cell type). So researchers tried injecting these stem-cell-derived cardiomyocytes into damaged hearts in experimental animals, in the hope that they would be incorporated into the damaged tissue. But these experiments didn’t always provide clear benefits to the animals.

Stem cells used to partially repair damaged hearts Read More »

sleeping-pills-stop-the-brain’s-system-for-cleaning-out-waste

Sleeping pills stop the brain’s system for cleaning out waste


Cleanup on aisle cerebellum

A specialized system sends pulses of pressure through the fluids in our brain.

Our bodies rely on their lymphatic system to drain excessive fluids and remove waste from tissues, feeding those back into the blood stream. It’s a complex yet efficient cleaning mechanism that works in every organ except the brain. “When cells are active, they produce waste metabolites, and this also happens in the brain. Since there are no lymphatic vessels in the brain, the question was what was it that cleaned the brain,” Natalie Hauglund, a neuroscientist at Oxford University who led a recent study on the brain-clearing mechanism, told Ars.

Earlier studies done mostly on mice discovered that the brain had a system that flushed its tissues with cerebrospinal fluid, which carried away waste products in a process called glymphatic clearance. “Scientists noticed that this only happened during sleep, but it was unknown what it was about sleep that initiated this cleaning process,” Hauglund explains.

Her study found the glymphatic clearance was mediated by a hormone called norepinephrine and happened almost exclusively during the NREM sleep phase. But it only worked when sleep was natural. Anesthesia and sleeping pills shut this process down nearly completely.

Taking it slowly

The glymphatic system in the brain was discovered back in 2013 by Dr. Maiken Nedergaard, a Danish neuroscientist and a coauthor of Hauglund’s paper. Since then, there have been numerous studies aimed at figuring out how it worked, but most of them had one problem: they were done on anesthetized mice.

“What makes anesthesia useful is that you can have a very controlled setting,” Hauglund says.

Most brain imaging techniques require a subject, an animal or a human, to be still. In mouse experiments, that meant immobilizing their heads so the research team could get clear scans. “But anesthesia also shuts down some of the mechanisms in the brain,” Hauglund argues.

So, her team designed a study to see how the brain-clearing mechanism works in mice that could move freely in their cages and sleep naturally whenever they felt like it. “It turned out that with the glymphatic system, we didn’t really see the full picture when we used anesthesia,” Hauglund says.

Looking into the brain of a mouse that runs around and wiggles during sleep, though, wasn’t easy. The team pulled it off by using a technique called flow fiber photometry which works by imaging fluids tagged with fluorescent markers using a probe implanted in the brain. So, the mice got the optical fibers implanted in their brains. Once that was done, the team put fluorescent tags in the mice’s blood, cerebrospinal fluid, and on the norepinephrine hormone. “Fluorescent molecules in the cerebrospinal fluid had one wavelength, blood had another wavelength, and norepinephrine had yet another wavelength,” Hauglund says.

This way, her team could get a fairly precise idea about the brain fluid dynamics when mice were awake and asleep. And it turned out that the glymphatic system basically turned brain tissues into a slowly moving pump.

Pumping up

“Norepinephrine is released from a small area of the brain in the brain stem,” Hauglund says. “It is mainly known as a response to stressful situations. For example, in fight or flight scenarios, you see norepinephrine levels increasing.” Its main effect is causing blood vessels to contract. Still, in more recent research, people found out that during sleep, norepinephrine is released in slow waves that roll over the brain roughly once a minute. This oscillatory norepinephrine release proved crucial to the operation of the glymphatic system.

“When we used the flow fiber photometry method to look into the brains of mice, we saw these slow waves of norepinephrine, but we also saw how it works in synchrony with fluctuation in the blood volume,” Hauglund says.

Every time the norepinephrine level went up, it caused the contraction of the blood vessels in the brain, and the blood volume went down. At the same time, the contraction increased the volume of the perivascular spaces around the blood vessels, which were immediately filled with the cerebrospinal fluid.

When the norepinephrine level went down, the process worked in reverse: the blood vessels dilated, letting the blood in and pushing the cerebrospinal fluid out. “What we found was that norepinephrine worked a little bit like a conductor of an orchestra and makes the blood and cerebrospinal fluid move in synchrony in these slow waves,” Hauglund says.

And because the study was designed to monitor this process in freely moving, undisturbed mice, the team learned exactly when all this was going on. When mice were awake, the norepinephrine levels were much higher but relatively steady. The team observed the opposite during the REM sleep phase, where the norepinephrine levels were consistently low. The oscillatory behavior was present exclusively during the NREM sleep phase.

So, the team wanted to check how the glymphatic clearance would work when they gave the mice zolpidem, a sleeping drug that had been proven to increase NREM sleep time. In theory, zolpidem should have boosted brain-clearing. But it turned it off instead.

Non-sleeping pills

“When we looked at the mice after giving them zolpidem, we saw they all fell asleep very quickly. That was expected—we take zolpidem because it makes it easier for us to sleep,” Hauglund says. “But then we saw those slow fluctuations in norepinephrine, blood volume, and cerebrospinal fluid almost completely stopped.”

No fluctuations meant the glymphatic system didn’t remove any waste. This was a serious issue, because one of the cellular waste products it is supposed to remove is amyloid beta, found in the brains of patients suffering from Alzheimer’s disease.

Hauglund speculates it could be possible zolpidem induces a state very similar to sleep but at the same time it shuts down important processes that happen during sleep. While heavy zolpidem use has been associated with increased risk of the Alzheimer disease, it is not clear if this increased risk was there because the drug was inhibiting oscillatory norepinephrine release in the brain. To better understand this, Hauglund wants to get a closer look into how the glymphatic system works in humans.

“We know we have the same wave-like fluid dynamics in the brain, so this could also drive the brain clearance in humans,” Haugland told Ars. “Still, it’s very hard to look at norepinephrine in the human brain because we need an invasive technique to get to the tissue.”

But she said norepinephrine levels in people can be estimated based on indirect clues. One of them is pupil dilation and contraction, which work in in synchrony with the norepinephrine levels. Another other clue may lay in microarousals—very brief, imperceivable awakenings which, Hauglund thinks, can be correlated with the brain clearing mechanism. “I am currently interested in this phenomenon […]. Right now we have no idea why microarousals are there or what function they have” Hauglund says.

But the last step she has on her roadmap is making better sleeping pills. “We need sleeping drugs that don’t have this inhibitory effect on the norepinephrine waves. If we can have a sleeping pill that helps people sleep without disrupting their sleep at the same time it will be very important,” Hauglund concludes.

Cell, 2025. DOI: 10.1016/j.cell.2024.11.027

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

Sleeping pills stop the brain’s system for cleaning out waste Read More »

peeing-is-contagious-among-chimps

Peeing is contagious among chimps

Those results supported the initial hypothesis that chimps tended to urinate in sync rather than randomly. Further analysis showed that the closer a chimp was to another peeing chimp, the more likely the probability of that chimp peeing as well—evidence of social contagion. Finally, Onishi et al. wanted to explore whether social relationships (like socially close pairs, evidenced by mutual grooming and similar behaviors) influenced contagious urination. The only social factor that proved relevant was dominance, with less-dominant chimps being more prone to contagious urination.

There may still be other factors influencing the behavior, and more experimental research is needed on potential sensory cues and social triggers in order to identify possible underlying mechanisms for the phenomenon. Furthermore, this study was conducted with a captive chimp population; to better understand potential evolutionary roots, there should be research on wild chimp populations, looking at possible links between contagious urination and factors like ranging patterns, territory use, and so forth.

“This was an unexpected and fascinating result, as it opens up multiple possibilities for interpretation,” said coauthor Shinya Yamamoto, also of Kyoto University. “For instance, it could reflect hidden leadership in synchronizing group activities, the reinforcement of social bonds, or attention bias among lower-ranking individuals. These findings raise intriguing questions about the social functions of this behavior.”

DOI: Current Biology, 2025. 10.1016/j.cub.2024.11.052 (About DOIs).

Peeing is contagious among chimps Read More »

life-is-thriving-in-the-subsurface-depths-of-earth

Life is thriving in the subsurface depths of Earth

Nitrospirota is an archaeal phylum that’s particularly common in the terrestrial subsurface. Some species of nitrospirota are capable of oxidizing ammonia, while others can reduce it to nitrite, which is used by phytoplankton and also defends against pathogens in the human stomach, mouth, and skin.

Proteobacteria is a bacterial phylum that’s especially abundant in the terrestrial and marine subsurface. Some proteobacteria live in deep ocean trenches, and oxidize carbon monoxide (which contributes to global warming and depletes ozone). Bacteria also common in the marine subsurface include Desulfobacteria and Methylomirabilota. Desulfobacteria reduce sulfates, and other sulfate-reducing bacterias have already shown they can be used to help clean up contaminated soil. Methylomirabilota help control methane levels in the atmosphere by oxidizing methane.

Something unexpected that caught Ruff’s attention was how total diversity went up with depth. This was surprising because less energy is available at deeper levels of the subsurface. For archaea, diversity went up with the increase in depth in terrestrial environments but not marine environments. The same happened with bacteria, except in marine instead of terrestrial environments.

Much of what lies far below our feet still eludes us. Ruff suggests that single-cell microbes in even deeper, yet unexplored levels of the subsurface may have adapted to the absence of energy by slowing down their metabolisms so drastically that it could take decades, even centuries, for them to divide just once.

If there really are microbes that manage to live longer than humans with this survival tactic, it is possible similar species might be hiding on planets such as Mars, where the surface has long been blasted by radiation.

“Understanding deep life on Earth could be a model for discovering if there was life on Mars, and if it has survived,” Ruff said in a press release.

Maybe future technology could retrieve samples several kilometers below the Martian surface. Until then, keep digging.

Science Advances, 2024. DOI: 10.1126/sciadv.adq0645

Life is thriving in the subsurface depths of Earth Read More »