Biology

are-these-chimps-having-a-fruity-booze-up-in-the-wild?

Are these chimps having a fruity booze-up in the wild?

Is there anything more human than gathering in groups to share food and partake in a fermented beverage or two (or three, or….)? Researchers have caught wild chimpanzees on camera engaging in what appears to be similar activity: sharing fermented African breadfruit with measurable alcoholic content. According to a new paper published in the journal Current Biology, the observational data is the first evidence of the sharing of alcoholic foods among nonhuman great apes in the wild.

The fruit in question is seasonal and comes from Treculia africana trees common across the home environment of the wild chimps in Cantanhez National Park in Guinea-Bissau. Once mature, the fruits drop from the tree to the ground and slowly ripen from a hard, deep green exterior to a yellow, spongier texture. Because the chimps are unhabituated, the authors deployed camera traps at three separate locations to record their feeding and sharing behavior.

They recorded 10 instances of selective fruit sharing among 17 chimps, with the animals exhibiting a marked preference for riper fruit. Between April and July 2022, the authors measured the alcohol content of the fruit with a handy portable breathalyzer and found almost all of the fallen fruit (90 percent) contained some ethanol, with the ripest containing the highest levels—the equivalent of 0.61 percent ABV (alcohol by volume).

That’s comparatively low to alcoholic drinks typically consumed by humans, but then again, fruit accounts for as much as 60 to 80 percent of the chimps’ diet, so the amount of ethanol consumed could add up quickly. It’s highly unlikely the chimps would get drunk, however. It wouldn’t confer any evolutionary advantage, and per the authors, there is evidence in the common ancestor of African apes of a molecular mechanism that increases the ability to metabolize alcohol.

Are these chimps having a fruity booze-up in the wild? Read More »

lichens-can-survive-almost-anything,-and-some-might-survive-mars

Lichens can survive almost anything, and some might survive Mars

Whether anything ever lived on Mars is unknown. And the present environment, with harsh temperatures, intense radiation, and a sparse atmosphere, isn’t exactly propitious for life. Despite the red planet’s brutality, lichens that inhabit some of the harshest environments on Earth could possibly survive there.

Lichens are symbionts, or two organisms that are in a cooperative relationship. There is a fungal component (most are about 90 percent fungus) and a photosynthetic component (algae or cyanobacteria). To see if some species of lichen had what it takes to survive on Mars, a team of researchers led by botanist Kaja Skubała used the Space Research Center of the Polish Academy of Sciences to expose the lichen species Diploschistes muscorum and Cetrarea aculeata to simulate Mars conditions.

“Our study is the first to demonstrate that the metabolism of the fungal partner in lichen symbiosis was active while being in a Mars-like environment,” the researchers said in a study recently published in IMA Fungus. “X-rays associated with solar flares and SEPs reaching Mars should not affect the potential habitability of lichens on this planet.”

Martian ionizing radiation is threatening to most forms of life because it can cause damage at the cellular level. It can also get in the way of physical, genetic, morphological, and biochemical processes, depending on the organism and radiation level.

Going to extremes

Lichens have an edge when it comes to survival. They share characteristics with other organisms that can handle high levels of stress, including a low metabolism, not needing much in the way of nutrition, and longevity. Much like tardigrades, lichens can stay in a desiccated state for extended periods until they are rehydrated. Other lichen adaptations to extreme conditions include metabolites that screen out UV rays and melanin pigments that also defend against radiation.

Lichens can survive almost anything, and some might survive Mars Read More »

to-regenerate-a-head,-you-first-have-to-know-where-your-tail-is

To regenerate a head, you first have to know where your tail is

Before a critical point in development, the animals failed to close the wound made by the cut, causing the two embryo halves to simply spew cells out into the environment. Somewhat later, however, there was excellent survival, and the head portion of the embryo could regenerate a tail segment. This tells us that the normal signaling pathways present in the embryo are sufficient to drive the process forward.

But the tail of the embryo at this stage doesn’t appear to be capable of rebuilding its head. But the researchers found that they could inhibit wnt signaling in these posterior fragments, and that was enough to allow the head to develop.

Lacking muscle

One possibility here is that wnt signaling is widely active in the posterior of the embryo at this point, blocking formation of anterior structures. Alternatively, the researchers hypothesize that the problem is with the muscle cells that normally help organize the formation of a stem-cell-filled blastema, which is needed to kick off the regeneration process. Since the anterior end of the embryo develops earlier, they suggest there may simply not be enough muscle cells in the tail to kick off this process at early stages of development.

To test their hypothesis, they performed a somewhat unusual experiment. They started by cutting off the tails of embryos and saving them for 24 hours. At that point, they cut the front end off tails, creating a new wound to heal. At this point, regeneration proceeded as normal, and the tails grew a new head. This isn’t definitive evidence that muscle cells are what’s missing at early stages, but it does indicate that some key developmental step happens in the tail within the 24-hour window after the first cut.

The results reinforce the idea that regeneration of major body parts requires the re-establishment of the signals that lay out organization of the embryo in development—something that gets complicated if those signals are currently acting to organize the embryo. And it clearly shows that the cells needed to do this reorganization aren’t simply set aside early on in development but instead take some time to appear. All of that information will help clarify the bigger-picture question of how these animals manage such a complex regeneration process.

Current Biology, 2025. DOI: 10.1016/j.cub.2025.03.065  (About DOIs).

To regenerate a head, you first have to know where your tail is Read More »

de-extinction-company-announces-that-the-dire-wolf-is-back

De-extinction company announces that the dire wolf is back

On Monday, biotech company Colossal announced what it views as its first successful de-extinction: the dire wolf. These large predators were lost during the Late Pleistocene extinctions that eliminated many large land mammals from the Americas near the end of the most recent glaciation. Now, in a coordinated PR blitz, the company is claiming that clones of gray wolves with lightly edited genomes have essentially brought the dire wolf back. (Both Time and The New Yorker were given exclusive access to the animals ahead of the announcement.)

The dire wolf is a relative of the now-common gray wolf, with clear differences apparent between the two species’ skeletons. Based on the sequence of two new dire wolf genomes, the researchers at Colossal conclude that dire wolves formed a distinct branch within the canids over 2.5 million years ago. For context, that’s over twice as long as brown and polar bears are estimated to have been distinct species. Dire wolves are also large, typically the size of the largest gray wolf populations. Comparisons between the new genomes and those of other canids show that the dire wolf also had a light-colored coat.

That large of an evolutionary separation means there are likely a lot of genetic differences between the gray and dire wolves. Colossal’s internal and unpublished analysis suggested that key differences could be made by editing 14 different areas of the genome, with 20 total edits required. The new animals are reported to have had 15 variants engineered in. It’s unclear what accounts for the difference, and a Colossal spokesperson told Ars: “We are not revealing all of the edits that we made at this point.”

Nevertheless, the information that the company has released indicates that it was focused on recapitulating the appearance of a dire wolf, with an emphasis on large size and a white coat. For example, the researchers edited in a gene variant that’s found in gray wolf populations that are physically large, rather than the variant found in the dire wolf genome. A similar thing was done to achieve the light coat color. This is a cautious approach, as these changes are already known to be compatible with the rest of the gray wolf’s genome.

De-extinction company announces that the dire wolf is back Read More »

editorial:-mammoth-de-extinction-is-bad-conservation

Editorial: Mammoth de-extinction is bad conservation


Anti-extinction vs. de-extinction

Ecosystems are inconveniently complex, and elephants won’t make good surrogates.

Are we ready for mammoths when we can’t handle existing human-pachyderm conflicts? Credit: chuchart duangdaw

The start-up Colossal Biosciences aims to use gene-editing technology to bring back the woolly mammoth and other extinct species. Recently, the company achieved major milestones: last year, they generated stem cells for the Asian elephant, the mammoth’s closest living relative, and this month they published photos of genetically modified mice with long, mammoth-like coats. According to the company’s founders, including Harvard and MIT professor George Church, these advances take Colossal a big step closer to their goal of using mammoths to combat climate change by restoring Arctic grassland ecosystems. Church also claims that Colossal’s woolly mammoth program will help protect endangered species like the Asian elephant, saying “we’re injecting money into conservation efforts.”

In other words, the scientific advances Colossal makes in their lab will result in positive changes from the tropics to the Arctic, from the soil to the atmosphere.

Colossal’s Jurassic Park-like ambitions have captured the imagination of the public and investors, bringing its latest valuation to $10 billion. And the company’s research does seem to be resulting in some technical advances. But I’d argue that the broader effort to de-extinct the mammoth is—as far as conservation efforts go—incredibly misguided. Ultimately, Colossal’s efforts won’t end up being about helping wild elephants or saving the climate. They’ll be about creating creatures for human spectacle, with insufficient attention to the costs and opportunity costs to human and animal life.

Shaky evidence

The Colossal website explains how they believe resurrected mammoths could help fight climate change: “cold-tolerant elephant mammoth hybrids grazing the grasslands… [will] scrape away layers of snow, so that the cold air can reach the soil.” This will reportedly help prevent permafrost from melting, blocking the release of greenhouse gasses currently trapped in the soil. Furthermore, by knocking down trees and maintaining grasslands, Colossal says, mammoths will help slow snowmelt, ensuring Arctic ecosystems absorb less sunlight.

Conservationists often claim that the reason to save charismatic species is that they are necessary for the sound functioning of the ecosystems that support humankind. Perhaps the most well-known of these stories is about the ecological changes wolves drove when they were reintroduced to Yellowstone National Park. Through some 25 peer-reviewed papers, two ecologists claimed to demonstrate that the reappearance of wolves in Yellowstone changed the behavior of elk, causing them to spend less time browsing the saplings of trees near rivers. This led to a chain of cause and effect (a trophic cascade) that affected beavers, birds, and even the flow of the river. A YouTube video on the phenomenon called “How Wolves Change Rivers” has been viewed more than 45 million times.

But other scientists were unable to replicate these findings—they discovered that the original statistics were flawed, and that human hunters likely contributed to elk population declines in Yellowstone.Ultimately, a 2019 review of the evidence by a team of researchers concluded that “the most robust science suggests trophic cascades are not evident in Yellowstone.” Similar ecological claims about tigers and sharks as apex predators also fail to withstand scientific scrutiny.

Elephants—widely described as “keystone species”—are also stars of a host of similar ecological stories. Many are featured on the Colossal website, including one of the most common claims about the role elephants play in seed dispersal. “Across all environments,” reads the website, “elephant dung filled with seeds serve to spread plants […] boosting the overall health of the ecosystem.” But would the disappearance of elephants really result in major changes in plant life? After all, some of the world’s grandest forests (like the Amazon) have survived for millennia after the disappearance of mammoth-sized megafauna.

For my PhD research in northeast India, I tried to systematically measure how important Asian elephants were for seed dispersal compared to other animals in the ecosystem; our team’s work, published in five peer-reviewed ecological journals (reviewed here), does find that elephants are uniquely good at dispersing the seeds of a few large-fruited species. But we also found that domestic cattle and macaques disperse some species’ seeds quite well, and that 80 percent of seeds dispersed in elephant dung end up eaten by ants. After several years of study, I cannot say with confidence that the forests where I worked would be drastically different in the absence of elephants.

The evidence for how living elephants affect carbon sequestration is also quite mixed. On the one hand, one paper finds that African forest elephants knock down softwood trees, making way for hardwood trees that sequester more carbon. But on the other hand, many more researchers looking at African savannas have found that elephants knock down lots of trees, converting forests into savannas and reducing carbon sequestration.

Colossal’s website offers links to peer-reviewed research that support their suppositions on the ecological role of woolly mammoths. A key study offers intriguing evidence that keeping large herbivores—reindeer, Yakutian horses, moose, musk ox, European bison, yaks, and cold-adapted sheep—at artificially high levels in a tussock grassland helped achieve colder ground temperatures, ostensibly protecting permafrost. But the study raises lots of questions: is it possible to boost these herbivores’ populations across the whole northern latitudes? If so, why do we need mammoths at all—why not just use species that already exist, which would surely be cheaper?

Plus, as ecologist Michelle Mack noted, as the winters warm due to climate change, too much trampling or sweeping away of snow could have the opposite effect, helping warm the soils underneath more quickly—if so, mammoths could be worse for the climate, not better.

All this is to say that ecosystems are diverse and messy, and those of us working in functional ecology don’t always discover consistent patterns. Researchers in the field often struggle to find robust evidence for how a living species affects modern-day ecosystems—surely it is far harder to understand how a creature extinct for around 10,000 years shaped its environment? And harder still to predict how it would shape tomorrow’s ecosystems? In effect, Colossal’s ecological narrative relies on that difficulty. But just because claims about the distant past are harder to fact-check doesn’t mean they are more likely to be true.

Ethical blind spots

Colossal’s website spells out 10 steps for mammoth resurrection. Steps nine and 10 are: “implant the early embryo into the healthy Asian or African elephant surrogates,” and “care for the surrogates in a world-class conservation facility for the duration of the gestation and afterward.”

Colossal’s cavalier plans to use captive elephants as surrogates for mammoth calves illustrate an old problem in modern wildlife conservation: indifference towards individual animal suffering. Leading international conservation NGOs lack animal welfare policies that would push conservationists to ask whether the costs of interventions in terms of animal welfare outweigh the biodiversity benefits. Over the years, that absence has resulted in a range of questionable decisions.

Colossal’s efforts take this apathy towards individual animals into hyperdrive. Despite society’s thousands of years of experience with Asian elephants, conservationists struggle to breed them in captivity. Asian elephants in modern zoo facilities suffer from infertility and lose their calves to stillbirth and infanticides almost twice as often as elephants in semi-wild conditions. Such problems will almost certainly be compounded when scientists try to have elephants deliver babies created in the lab, with a hodge podge of features from Asian elephants and mammoths.

Even in the best-case scenario, there would likely be many, many failed efforts to produce a viable organism before Colossal gets to a herd that can survive. This necessarily trial-and-error process could lead to incredible suffering for both elephant mothers and mammoth calves along the way. Elephants in the wild have been observed experiencing heartbreaking grief when their calves die, sometimes carrying their babies’ corpses for days—a grief the mother elephants might very well be subjected to as they are separated from their calves or find themselves unable to keep their chimeric offspring alive.

For the calves that do survive, their edited genomes could lead to chronic conditions, and the ancient mammoth gut microbiome might be impossible to resurrect, leading to digestive dysfunction. Then there will likely be social problems. Research finds that Asian elephants in Western zoos don’t live as long as wild elephants, and elephant researchers often bemoan the limited space, stimulation, and companionship available to elephants in captivity. These problems will surely also plague surviving animals.

Introduction to the wild will probably result in even more suffering: elephant experts recommend against introducing captive animals “that have had no natural foraging experience at all” to the wild as they are likely to experience “significant hardship.” Modern elephants survive not just through instinct, but through culture—matriarch-led herds teach calves what to eat and how to survive, providing a nurturing environment. We have good reason to believe mammoths also needed cultural instruction to survive. How many elephant/mammoth chimeras will suffer false starts and tragic deaths in the punishing Arctic without the social conditions that allowed them to thrive millennia ago?

Opportunity costs

If Colossal (or Colossal’s investors) really wish to foster Asian elephant conservation or combat climate change, they have many better options. The opportunity costs are especially striking for Asian elephant conservation: while over a trillion dollars is spent combatting climate change annually, the funds available to address the myriad of problems facing wild Asian elephants are far smaller. Take the example of India, the country with the largest population of wild Asian elephants in the world (estimated at 27,000) in a sea of 1.4 billion human beings.

Indians generally revere elephants and tolerate a great deal of hardship to enable coexistence—about 500 humans are killed due to human-elephant conflict annually there. But as a middle-income country continuing to struggle with widespread poverty, the federal government typically budgets less than $4M for Project Elephant, its flagship elephant conservation program. That’s less than $200 per wild elephant and 1/2000th as much as Colossal has raised so far. India’s conservation NGOs generally have even smaller budgets for their elephant work. The result is that conservationists are a decade behindwhere they expected to be in mapping where elephants range.

With Colossal’s budget, Asian elephant conservation NGOs could tackle the real threats to the survival of elephants: human-elephant conflict, loss of habitat and connectivity, poaching, and the spread of invasive plants unpalatable to elephants. Some conservationists are exploring creative schemes to help keep people and elephants safe from each other. There are also community-based efforts toremove invasive species like Lantana camara and restore native vegetation. Funds could enable development of an AI-powered system that allows the automated identification and monitoring of individual elephants. There is also a need for improved compensation schemes to ensure those who lose crops or property to wild elephants are made whole again.

As a US-based synthetic biology company, Colossal could also use its employees’ skills much more effectively to fight climate change. Perhaps they could genetically engineer trees and shrubs to sequester more carbon. Or Colossal could help us learn to produce meat from modified microbes or cultivated lines of cow, pig, and chicken cells, developing alternative proteins that could more efficiently feed the planet, protecting wildlife habitat and reducing greenhouse gas emissions.

The question is whether Colossal’s leaders and supporters are willing to pivot from a project that grabs news headlines to ones that would likely make positive differences. By tempting us with the resurrection of a long-dead creature, Colossal forces us to ask: do we want conservation to be primarily about feeding an unreflective imagination? Or do we want evidence, logic, and ethics to be central to our relationships with other species? For anyone who really cares about the climate, elephants, or animals in general, de-extincting the mammoth represents a huge waste and a colossal mistake.

Nitin Sekar served as the national lead for elephant conservation at WWF India for five years and is now a member of the Asian Elephant Specialist Group of the International Union for the Conservation of Nature’s Species Survival Commission The views presented here are his own.

Editorial: Mammoth de-extinction is bad conservation Read More »

we-have-the-first-video-of-a-plant-cell-wall-being-built

We have the first video of a plant cell wall being built

Plant cells are surrounded by an intricately structured protective coat called the cell wall. It’s built of cellulose microfibrils intertwined with polysaccharides like hemicellulose or pectin. We have known what plant cells look like without their walls, and we know what they look like when the walls are fully assembled, but we’ve never seen the wall-building process in action. “We knew the starting point and the finishing point, but had no idea what happens in between,” says Eric Lam, a plant biologist at Rutgers University. He’s a co-author of the study that caught wall-building plant cells in action for the first time. And once we saw how the cell wall building worked, it looked nothing like how we drew that in biology handbooks.

Camera-shy builders

Plant cells without walls, known as protoplasts, are very fragile, and it has been difficult to keep them alive under a microscope for the several hours needed for them to build walls. Plant cells are also very light-sensitive, and most microscopy techniques require pointing a strong light source at them to get good imagery.

Then there was the issue of tracking their progress. “Cellulose is not fluorescent, so you can’t see it with traditional microscopy,” says Shishir Chundawat, a biologist at Rutgers. “That was one of the biggest issues in the past.” The only way you can see it is if you attach a fluorescent marker to it. Unfortunately, the markers typically used to label cellulose were either bound to other compounds or were toxic to the plant cells. Given their fragility and light sensitivity, the cells simply couldn’t survive very long with toxic markers as well.

We have the first video of a plant cell wall being built Read More »

newly-hatched-hummingbird-looks,-acts-like-a-toxic-caterpillar

Newly hatched hummingbird looks, acts like a toxic caterpillar

Further observation of the nest revealed that the female hummingbird had added to its hatchling’s caterpillar camouflage by lining the nest with hairy-looking material from the seeds of balsa trees. The researchers also noticed that, whenever they approached the nest to film, the chick would move its head upward and start shaking it sideways while its feathers stood on end. It was trying to make itself look threatening.

When the research team backed off, the hummingbird chick went back to laying low in its nest. They wondered whether it behaved this way with actual predators, but eventually saw a wasp known to prey on young hummingbirds creep close to the nest. The chick displayed the same behavior it had with humans, which succeeded in scaring the wasp off.

Falk determined that the feathers, color, and head-shaking were eerily similar to the larvae of moths in the Megalopygidae and Saturniidae families, which are also endemic to the region. They might not be the mirror image of a particular species, but they appear close enough that predators would consider themselves warned.

“The behavior of the white-necked jacobin, when approached by humans and a predatory wasp, resembles the sudden ‘thrashing’ or ‘jerking’ behavior exhibited by many caterpillars in response to disturbance, including in the habitat where this bird was found,” he said regarding the same study.

…now you don’t

Could there be an alternate explanation for this hummingbird cosplaying as a caterpillar? Maybe. The researchers think it’s possible that the long feathers that appear to mimic spines may have evolved as a form of crypsis, or camouflage that helps an organism blend in with its background. The balsa tree material that’s similar to the feathers obviously helped with this.

Newly hatched hummingbird looks, acts like a toxic caterpillar Read More »

bonobos’-calls-may-be-the-closest-thing-to-animal-language-we’ve-seen

Bonobos’ calls may be the closest thing to animal language we’ve seen

Bonobos, great apes related to us and chimpanzees that live in the Republic of Congo, communicate with vocal calls including peeps, hoots, yelps, grunts, and whistles. Now, a team of Swiss scientists led by Melissa Berthet, an evolutionary anthropologist at the University of Zurich, discovered bonobos can combine these basic sounds into larger semantic structures. In these communications, meaning is something more than just a sum of individual calls—a trait known as non-trivial compositionality, which we once thought was uniquely human.

To do this, Berthet and her colleagues built a database of 700 bonobo calls and deciphered them using methods drawn from distributional semantics, the methodology we’ve relied on in reconstructing long-lost languages like Etruscan or Rongorongo. For the first time, we have a glimpse into what bonobos mean when they call to each other in the wild.

Context is everything

The key idea behind distributional semantics is that when words appear in similar contexts, they tend to have similar meanings. To decipher an unknown language, you need to collect a large corpus of words and turn those words into vectors—mathematical representations that let you place them in a multidimensional semantic space. The second thing you need is context data, which tells you the circumstances in which these words were used (that gets vectorized, too). When you map your word vectors onto context vectors in this multidimensional space, what usually happens is that words with similar meaning end up close to each other. Berthet and her colleagues wanted to apply the same trick to bonobos’ calls. That seemed straightforward at first glance, but proved painfully hard to execute.

“We worked at a camp in the forest, got up super early at 3: 30 in the morning, walked one or two hours to get to the bonobos’ nest. At [the] time they would wake up, I would switch my microphone on for the whole day to collect as many vocalizations as I could,” Berthet says. Each recorded call then had to be annotated with a horribly long list of contextual parameters. Berthet had a questionnaire filled with queries like: is there a neighboring group around; are there predators around; is the caller feeding, resting, or grooming; is another individual approaching the caller, etc. There were 300 questions that had to be answered for each of the 700 recorded calls.

Bonobos’ calls may be the closest thing to animal language we’ve seen Read More »

monkeys-are-better-yodelers-than-humans,-study-finds

Monkeys are better yodelers than humans, study finds

Monkey see, monkey yodel?

That’s how it works for humans, but when it comes to the question of yodeling animals, it depends on how you define yodeling, according to bioacoustician Tecumseh Fitch of the University of Vienna in Austria, who co-authored this latest paper. Plenty of animal vocalizations use repeated sudden changes in pitch (including birds), and a 2023 study found that toothed whales can produce vocal registers through their noses for echolocation and communication.

There haven’t been as many studies of vocal registers in non-human primates, but researchers have found, for example, that the “coo” call of the Japanese macaque is similar to a human falsetto; the squeal of a Syke monkey is similar to the human “modal” register; and the Diana monkey produces alarm calls that are similar to “vocal fry” in humans.

It’s known that non-human primates have something humans have lost over the course of evolution: very thin, light vocal membranes just above the vocal folds. Scientists have pondered the purpose of those membranes, and a 2022 study concluded that this membrane was crucial for producing sounds. The co-authors of this latest paper wanted to test their hypothesis that the membranes serve as an additional oscillator to enable such non-human primates to achieve the equivalent of human voice registers. That, in turn, would render them capable in principle of producing a wider range of calls—perhaps even a yodel.

The team studied many species, including black and gold howler monkeys, tufted capuchins, black-capped squirrel monkeys, and Peruvian spider monkeys. They took CT scans of excised monkey larynxes housed at the Japan Monkey Center, as well as two excised larynxes from tufted capuchin monkeys at Kyoto University. They also made live recordings of monkey calls at the La Senda Verde animal refuge in the Bolivian Andes, using non-invasive EGG to monitor vocal fold vibrations.

Monkeys are better yodelers than humans, study finds Read More »

male-fruit-flies-drink-more-alcohol-to-get-females-to-like-them

Male fruit flies drink more alcohol to get females to like them

Fruit flies (Drosophila melanogaster) are tremendously fond of fermented foodstuffs. Technically, it’s the yeast they crave, produced by yummy rotting fruit, but they can consume quite a lot of ethanol as a result of that fruity diet. Yes, fruit flies have ultra-fast metabolisms, the better to burn off the booze, but they can still get falling-down drunk—so much so, that randy inebriated male fruit flies have been known to court other males by mistake and fail to mate successfully.

Then again, apparently adding alcohol to their food increases the production of sex pheromones in male fruit flies, according to a new paper published in the journal Science Advances. That, in turn, makes them more attractive to the females of the species.

“We show a direct and positive effect of alcohol consumption on the mating success of male flies,” said co-author Ian Keesey of the University of Nebraska, Lincoln. “The effect is caused by the fact that alcohol, especially methanol, increases the production of sex pheromones. This in turn makes alcoholic males more attractive to females and ensures a higher mating success rate, whereas the success of drunken male humans with females is likely to be questionable.”

Fruit flies are the workhorses of modern genetics research, used to study everything from cancer to sleep disorders. They make excellent model systems because they share so many genes with humans, plus they are cheap, easy to breed, and can be genetically altered easily. Many years ago, I had the privilege of visiting the University of California, San Francisco laboratory of behavior geneticist Ulrike Heberlein, who spent years getting fruit flies drunk in an “Inebriometer” to learn about the various genes that influence alcohol tolerance. (Heberlein is now scientific program director and laboratory head at the Howard Hughes Medical Institute’s Janelia Farm Research Campus.)

Male fruit flies drink more alcohol to get females to like them Read More »

we-probably-inherited-our-joints-from…-a-fish

We probably inherited our joints from… a fish

What do we have in common with fish, besides being vertebrates? The types of joints we (and most vertebrates) share most likely originated from the same common ancestor. But it’s not a feature that we share with all vertebrates.

Humans, other land vertebrates, and jawed fish have synovial joints. The lubricated cavity within these joints makes them more mobile and stable because it allows for bones or cartilage to slide against each other without friction, which facilitates movement.

The origin of these joints was uncertain. Now, biologist Neelima Sharma of the University of Chicago and her colleagues have taken a look at which fish form this type of joint. Synovial joints are known to be present in jawed but not jawless fish. This left the question of whether they are just a feature of bony skeletons in general or if they are also found in fish with cartilaginous skeletons, such as sharks and skates (there are no land animals with cartilaginous skeletons).

As Sharma and her team found, cartilaginous fish with jaws, such as the skate embryos they studied, do develop these joints, while jawless fish, such as lampreys and hagfish, lack them.

So what could this mean? If jawed fish have synovial joints in common with all jawed vertebrates, including us, it must have evolved in our shared ancestor.

Something fishy in our past

While the common ancestor of vertebrates with synovial joints is still a mystery, the oldest specimen with evidence of these joints is Bothriolepis canadensis, a fish that lived about 387 to 360 million years ago during the Middle to Late Devonian period.

When using CT scanning to study a Bothriolepis fossil, Sharma observed a joint cavity between the shoulder and pectoral fin. Whether the cavity was filled with synovial fluid or cartilage is impossible to tell, but either way, she thinks it appears to have functioned like a synovial joint would. Fossils of early jawless fish, in contrast, lack any signs of synovial joints.

We probably inherited our joints from… a fish Read More »

“infantile-amnesia”-occurs-despite-babies-showing-memory-activity

“Infantile amnesia” occurs despite babies showing memory activity

For many of us, memories of our childhood have become a bit hazy, if not vanishing entirely. But nobody really remembers much before the age of 4, because nearly all humans experience what’s termed “infantile amnesia,” in which memories that might have formed before that age seemingly vanish as we move through adolescence. And it’s not just us; the phenomenon appears to occur in a number of our fellow mammals.

The simplest explanation for this would be that the systems that form long-term memories are simply immature and don’t start working effectively until children hit the age of 4. But a recent animal experiment suggests that the situation in mice is more complex: the memories are there, they’re just not normally accessible, although they can be re-activated. Now, a study that put human infants in an MRI tube suggests that memory activity starts by the age of 1, suggesting that the results in mice may apply to us.

Less than total recall

Mice are one of the species that we know experience infantile amnesia. And, thanks to over a century of research on mice, we have some sophisticated genetic tools that allow us to explore what’s actually involved in the apparent absence of the animals’ earliest memories.

A paper that came out last year describes a series of experiments that start by having very young mice learn to associate seeing a light come on with receiving a mild shock. If nothing else is done with those mice, that association will apparently be forgotten later in life due to infantile amnesia.

But in this case, the researchers could do something. Neural activity normally results in the activation of a set of genes. In these mice, the researchers engineered it so one of the genes that gets activated encodes a protein that can modify DNA. When this protein is made, it results in permanent changes to a second gene that was inserted in the animal’s DNA. Once activated through this process, the gene leads to the production of a light-activated ion channel.

“Infantile amnesia” occurs despite babies showing memory activity Read More »