Anthropic

anthropic-gives-court-authority-to-intervene-if-chatbot-spits-out-song-lyrics

Anthropic gives court authority to intervene if chatbot spits out song lyrics

Anthropic did not immediately respond to Ars’ request for comment on how guardrails currently work to prevent the alleged jailbreaks, but publishers appear satisfied by current guardrails in accepting the deal.

Whether AI training on lyrics is infringing remains unsettled

Now, the matter of whether Anthropic has strong enough guardrails to block allegedly harmful outputs is settled, Lee wrote, allowing the court to focus on arguments regarding “publishers’ request in their Motion for Preliminary Injunction that Anthropic refrain from using unauthorized copies of Publishers’ lyrics to train future AI models.”

Anthropic said in its motion opposing the preliminary injunction that relief should be denied.

“Whether generative AI companies can permissibly use copyrighted content to train LLMs without licenses,” Anthropic’s court filing said, “is currently being litigated in roughly two dozen copyright infringement cases around the country, none of which has sought to resolve the issue in the truncated posture of a preliminary injunction motion. It speaks volumes that no other plaintiff—including the parent company record label of one of the Plaintiffs in this case—has sought preliminary injunctive relief from this conduct.”

In a statement, Anthropic’s spokesperson told Ars that “Claude isn’t designed to be used for copyright infringement, and we have numerous processes in place designed to prevent such infringement.”

“Our decision to enter into this stipulation is consistent with those priorities,” Anthropic said. “We continue to look forward to showing that, consistent with existing copyright law, using potentially copyrighted material in the training of generative AI models is a quintessential fair use.”

This suit will likely take months to fully resolve, as the question of whether AI training is a fair use of copyrighted works is complex and remains hotly disputed in court. For Anthropic, the stakes could be high, with a loss potentially triggering more than $75 million in fines, as well as an order possibly forcing Anthropic to reveal and destroy all the copyrighted works in its training data.

Anthropic gives court authority to intervene if chatbot spits out song lyrics Read More »

2024:-the-year-ai-drove-everyone-crazy

2024: The year AI drove everyone crazy


What do eating rocks, rat genitals, and Willy Wonka have in common? AI, of course.

It’s been a wild year in tech thanks to the intersection between humans and artificial intelligence. 2024 brought a parade of AI oddities, mishaps, and wacky moments that inspired odd behavior from both machines and man. From AI-generated rat genitals to search engines telling people to eat rocks, this year proved that AI has been having a weird impact on the world.

Why the weirdness? If we had to guess, it may be due to the novelty of it all. Generative AI and applications built upon Transformer-based AI models are still so new that people are throwing everything at the wall to see what sticks. People have been struggling to grasp both the implications and potential applications of the new technology. Riding along with the hype, different types of AI that may end up being ill-advised, such as automated military targeting systems, have also been introduced.

It’s worth mentioning that aside from crazy news, we saw fewer weird AI advances in 2024 as well. For example, Claude 3.5 Sonnet launched in June held off the competition as a top model for most of the year, while OpenAI’s o1 used runtime compute to expand GPT-4o’s capabilities with simulated reasoning. Advanced Voice Mode and NotebookLM also emerged as novel applications of AI tech, and the year saw the rise of more capable music synthesis models and also better AI video generators, including several from China.

But for now, let’s get down to the weirdness.

ChatGPT goes insane

Illustration of a broken toy robot.

Early in the year, things got off to an exciting start when OpenAI’s ChatGPT experienced a significant technical malfunction that caused the AI model to generate increasingly incoherent responses, prompting users on Reddit to describe the system as “having a stroke” or “going insane.” During the glitch, ChatGPT’s responses would begin normally but then deteriorate into nonsensical text, sometimes mimicking Shakespearean language.

OpenAI later revealed that a bug in how the model processed language caused it to select the wrong words during text generation, leading to nonsense outputs (basically the text version of what we at Ars now call “jabberwockies“). The company fixed the issue within 24 hours, but the incident led to frustrations about the black box nature of commercial AI systems and users’ tendency to anthropomorphize AI behavior when it malfunctions.

The great Wonka incident

A photo of the Willy's Chocolate Experience, which did not match AI-generated promises.

A photo of “Willy’s Chocolate Experience” (inset), which did not match AI-generated promises, shown in the background. Credit: Stuart Sinclair

The collision between AI-generated imagery and consumer expectations fueled human frustrations in February when Scottish families discovered that “Willy’s Chocolate Experience,” an unlicensed Wonka-ripoff event promoted using AI-generated wonderland images, turned out to be little more than a sparse warehouse with a few modest decorations.

Parents who paid £35 per ticket encountered a situation so dire they called the police, with children reportedly crying at the sight of a person in what attendees described as a “terrifying outfit.” The event, created by House of Illuminati in Glasgow, promised fantastical spaces like an “Enchanted Garden” and “Twilight Tunnel” but delivered an underwhelming experience that forced organizers to shut down mid-way through its first day and issue refunds.

While the show was a bust, it brought us an iconic new meme for job disillusionment in the form of a photo: the green-haired Willy’s Chocolate Experience employee who looked like she’d rather be anywhere else on earth at that moment.

Mutant rat genitals expose peer review flaws

An actual laboratory rat, who is intrigued. Credit: Getty | Photothek

In February, Ars Technica senior health reporter Beth Mole covered a peer-reviewed paper published in Frontiers in Cell and Developmental Biology that created an uproar in the scientific community when researchers discovered it contained nonsensical AI-generated images, including an anatomically incorrect rat with oversized genitals. The paper, authored by scientists at Xi’an Honghui Hospital in China, openly acknowledged using Midjourney to create figures that contained gibberish text labels like “Stemm cells” and “iollotte sserotgomar.”

The publisher, Frontiers, posted an expression of concern about the article titled “Cellular functions of spermatogonial stem cells in relation to JAK/STAT signaling pathway” and launched an investigation into how the obviously flawed imagery passed through peer review. Scientists across social media platforms expressed dismay at the incident, which mirrored concerns about AI-generated content infiltrating academic publishing.

Chatbot makes erroneous refund promises for Air Canada

If, say, ChatGPT gives you the wrong name for one of the seven dwarves, it’s not such a big deal. But in February, Ars senior policy reporter Ashley Belanger covered a case of costly AI confabulation in the wild. In the course of online text conversations, Air Canada’s customer service chatbot told customers inaccurate refund policy information. The airline faced legal consequences later when a tribunal ruled the airline must honor commitments made by the automated system. Tribunal adjudicator Christopher Rivers determined that Air Canada bore responsibility for all information on its website, regardless of whether it came from a static page or AI interface.

The case set a precedent for how companies deploying AI customer service tools could face legal obligations for automated systems’ responses, particularly when they fail to warn users about potential inaccuracies. Ironically, the airline had reportedly spent more on the initial AI implementation than it would have cost to maintain human workers for simple queries, according to Air Canada executive Steve Crocker.

Will Smith lampoons his digital double

The real Will Smith eating spaghetti, parodying an AI-generated video from 2023.

The real Will Smith eating spaghetti, parodying an AI-generated video from 2023. Credit: Will Smith / Getty Images / Benj Edwards

In March 2023, a terrible AI-generated video of Will Smith’s AI doppelganger eating spaghetti began making the rounds online. The AI-generated version of the actor gobbled down the noodles in an unnatural and disturbing way. Almost a year later, in February 2024, Will Smith himself posted a parody response video to the viral jabberwocky on Instagram, featuring AI-like deliberately exaggerated pasta consumption, complete with hair-nibbling and finger-slurping antics.

Given the rapid evolution of AI video technology, particularly since OpenAI had just unveiled its Sora video model four days earlier, Smith’s post sparked discussion in his Instagram comments where some viewers initially struggled to distinguish between the genuine footage and AI generation. It was an early sign of “deep doubt” in action as the tech increasingly blurs the line between synthetic and authentic video content.

Robot dogs learn to hunt people with AI-guided rifles

A still image of a robotic quadruped armed with a remote weapons system, captured from a video provided by Onyx Industries.

A still image of a robotic quadruped armed with a remote weapons system, captured from a video provided by Onyx Industries. Credit: Onyx Industries

At some point in recent history—somewhere around 2022—someone took a look at robotic quadrupeds and thought it would be a great idea to attach guns to them. A few years later, the US Marine Forces Special Operations Command (MARSOC) began evaluating armed robotic quadrupeds developed by Ghost Robotics. The robot “dogs” integrated Onyx Industries’ SENTRY remote weapon systems, which featured AI-enabled targeting that could detect and track people, drones, and vehicles, though the systems require human operators to authorize any weapons discharge.

The military’s interest in armed robotic dogs followed a broader trend of weaponized quadrupeds entering public awareness. This included viral videos of consumer robots carrying firearms, and later, commercial sales of flame-throwing models. While MARSOC emphasized that weapons were just one potential use case under review, experts noted that the increasing integration of AI into military robotics raised questions about how long humans would remain in control of lethal force decisions.

Microsoft Windows AI is watching

A screenshot of Microsoft's new

A screenshot of Microsoft’s new “Recall” feature in action. Credit: Microsoft

In an era where many people already feel like they have no privacy due to tech encroachments, Microsoft dialed it up to an extreme degree in May. That’s when Microsoft unveiled a controversial Windows 11 feature called “Recall” that continuously captures screenshots of users’ PC activities every few seconds for later AI-powered search and retrieval. The feature, designed for new Copilot+ PCs using Qualcomm’s Snapdragon X Elite chips, promised to help users find past activities, including app usage, meeting content, and web browsing history.

While Microsoft emphasized that Recall would store encrypted snapshots locally and allow users to exclude specific apps or websites, the announcement raised immediate privacy concerns, as Ars senior technology reporter Andrew Cunningham covered. It also came with a technical toll, requiring significant hardware resources, including 256GB of storage space, with 25GB dedicated to storing approximately three months of user activity. After Microsoft pulled the initial test version due to public backlash, Recall later entered public preview in November with reportedly enhanced security measures. But secure spyware is still spyware—Recall, when enabled, still watches nearly everything you do on your computer and keeps a record of it.

Google Search told people to eat rocks

This is fine. Credit: Getty Images

In May, Ars senior gaming reporter Kyle Orland (who assisted commendably with the AI beat throughout the year) covered Google’s newly launched AI Overview feature. It faced immediate criticism when users discovered that it frequently provided false and potentially dangerous information in its search result summaries. Among its most alarming responses, the system advised humans could safely consume rocks, incorrectly citing scientific sources about the geological diet of marine organisms. The system’s other errors included recommending nonexistent car maintenance products, suggesting unsafe food preparation techniques, and confusing historical figures who shared names.

The problems stemmed from several issues, including the AI treating joke posts as factual sources and misinterpreting context from original web content. But most of all, the system relies on web results as indicators of authority, which we called a flawed design. While Google defended the system, stating these errors occurred mainly with uncommon queries, a company spokesperson acknowledged they would use these “isolated examples” to refine their systems. But to this day, AI Overview still makes frequent mistakes.

Stable Diffusion generates body horror

An AI-generated image created using Stable Diffusion 3 of a girl lying in the grass.

An AI-generated image created using Stable Diffusion 3 of a girl lying in the grass. Credit: HorneyMetalBeing

In June, Stability AI’s release of the image synthesis model Stable Diffusion 3 Medium drew criticism online for its poor handling of human anatomy in AI-generated images. Users across social media platforms shared examples of the model producing what we now like to call jabberwockies—AI generation failures with distorted bodies, misshapen hands, and surreal anatomical errors, and many in the AI image-generation community viewed it as a significant step backward from previous image-synthesis capabilities.

Reddit users attributed these failures to Stability AI’s aggressive filtering of adult content from the training data, which apparently impaired the model’s ability to accurately render human figures. The troubled release coincided with broader organizational challenges at Stability AI, including the March departure of CEO Emad Mostaque, multiple staff layoffs, and the exit of three key engineers who had helped develop the technology. Some of those engineers founded Black Forest Labs in August and released Flux, which has become the latest open-weights AI image model to beat.

ChatGPT Advanced Voice imitates human voice in testing

An illustration of a computer synthesizer spewing out letters.

AI voice-synthesis models are master imitators these days, and they are capable of much more than many people realize. In August, we covered a story where OpenAI’s ChatGPT Advanced Voice Mode feature unexpectedly imitated a user’s voice during the company’s internal testing, revealed by OpenAI after the fact in safety testing documentation. To prevent future instances of an AI assistant suddenly speaking in your own voice (which, let’s be honest, would probably freak people out), the company created an output classifier system to prevent unauthorized voice imitation. OpenAI says that Advanced Voice Mode now catches all meaningful deviations from approved system voices.

Independent AI researcher Simon Willison discussed the implications with Ars Technica, noting that while OpenAI restricted its model’s full voice synthesis capabilities, similar technology would likely emerge from other sources within the year. Meanwhile, the rapid advancement of AI voice replication has caused general concern about its potential misuse, although companies like ElevenLabs have already been offering voice cloning services for some time.

San Francisco’s robotic car horn symphony

A Waymo self-driving car in front of Google's San Francisco headquarters, San Francisco, California, June 7, 2024.

A Waymo self-driving car in front of Google’s San Francisco headquarters, San Francisco, California, June 7, 2024. Credit: Getty Images

In August, San Francisco residents got a noisy taste of robo-dystopia when Waymo’s self-driving cars began creating an unexpected nightly disturbance in the South of Market district. In a parking lot off 2nd Street, the cars congregated autonomously every night during rider lulls at 4 am and began engaging in extended honking matches at each other while attempting to park.

Local resident Christopher Cherry’s initial optimism about the robotic fleet’s presence dissolved as the mechanical chorus grew louder each night, affecting residents in nearby high-rises. The nocturnal tech disruption served as a lesson in the unintentional effects of autonomous systems when run in aggregate.

Larry Ellison dreams of all-seeing AI cameras

A colorized photo of CCTV cameras in London, 2024.

In September, Oracle co-founder Larry Ellison painted a bleak vision of ubiquitous AI surveillance during a company financial meeting. The 80-year-old database billionaire described a future where AI would monitor citizens through networks of cameras and drones, asserting that the oversight would ensure lawful behavior from both police and the public.

His surveillance predictions reminded us of parallels to existing systems in China, where authorities already used AI to sort surveillance data on citizens as part of the country’s “sharp eyes” campaign from 2015 to 2020. Ellison’s statement reflected the sort of worst-case tech surveillance state scenario—likely antithetical to any sort of free society—that dozens of sci-fi novels of the 20th century warned us about.

A dead father sends new letters home

An AI-generated image featuring Dad's Uppercase handwriting.

An AI-generated image featuring my late father’s handwriting. Credit: Benj Edwards / Flux

AI has made many of us do weird things in 2024, including this writer. In October, I used an AI synthesis model called Flux to reproduce my late father’s handwriting with striking accuracy. After scanning 30 samples from his engineering notebooks, I trained the model using computing time that cost less than five dollars. The resulting text captured his distinctive uppercase style, which he developed during his career as an electronics engineer.

I enjoyed creating images showing his handwriting in various contexts, from folder labels to skywriting, and made the trained model freely available online for others to use. While I approached it as a tribute to my father (who would have appreciated the technical achievement), many people found the whole experience weird and somewhat disturbing. The things we unhinged Bing Chat-like journalists do to bring awareness to a topic are sometimes unconventional. So I guess it counts for this list!

For 2025? Expect even more AI

Thanks for reading Ars Technica this past year and following along with our team coverage of this rapidly emerging and expanding field. We appreciate your kind words of support. Ars Technica’s 2024 AI words of the year were: vibemarking, deep doubt, and the aforementioned jabberwocky. The old stalwart “confabulation” also made several notable appearances. Tune in again next year when we continue to try to figure out how to concisely describe novel scenarios in emerging technology by labeling them.

Looking back, our prediction for 2024 in AI last year was “buckle up.” It seems fitting, given the weirdness detailed above. Especially the part about the robot dogs with guns. For 2025, AI will likely inspire more chaos ahead, but also potentially get put to serious work as a productivity tool, so this time, our prediction is “buckle down.”

Finally, we’d like to ask: What was the craziest story about AI in 2024 from your perspective? Whether you love AI or hate it, feel free to suggest your own additions to our list in the comments. Happy New Year!

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

2024: The year AI drove everyone crazy Read More »

why-ai-language-models-choke-on-too-much-text

Why AI language models choke on too much text


Compute costs scale with the square of the input size. That’s not great.

Credit: Aurich Lawson | Getty Images

Large language models represent text using tokens, each of which is a few characters. Short words are represented by a single token (like “the” or “it”), whereas larger words may be represented by several tokens (GPT-4o represents “indivisible” with “ind,” “iv,” and “isible”).

When OpenAI released ChatGPT two years ago, it had a memory—known as a context window—of just 8,192 tokens. That works out to roughly 6,000 words of text. This meant that if you fed it more than about 15 pages of text, it would “forget” information from the beginning of its context. This limited the size and complexity of tasks ChatGPT could handle.

Today’s LLMs are far more capable:

  • OpenAI’s GPT-4o can handle 128,000 tokens (about 200 pages of text).
  • Anthropic’s Claude 3.5 Sonnet can accept 200,000 tokens (about 300 pages of text).
  • Google’s Gemini 1.5 Pro allows 2 million tokens (about 2,000 pages of text).

Still, it’s going to take a lot more progress if we want AI systems with human-level cognitive abilities.

Many people envision a future where AI systems are able to do many—perhaps most—of the jobs performed by humans. Yet many human workers read and hear hundreds of millions of words during our working years—and we absorb even more information from sights, sounds, and smells in the world around us. To achieve human-level intelligence, AI systems will need the capacity to absorb similar quantities of information.

Right now the most popular way to build an LLM-based system to handle large amounts of information is called retrieval-augmented generation (RAG). These systems try to find documents relevant to a user’s query and then insert the most relevant documents into an LLM’s context window.

This sometimes works better than a conventional search engine, but today’s RAG systems leave a lot to be desired. They only produce good results if the system puts the most relevant documents into the LLM’s context. But the mechanism used to find those documents—often, searching in a vector database—is not very sophisticated. If the user asks a complicated or confusing question, there’s a good chance the RAG system will retrieve the wrong documents and the chatbot will return the wrong answer.

And RAG doesn’t enable an LLM to reason in more sophisticated ways over large numbers of documents:

  • A lawyer might want an AI system to review and summarize hundreds of thousands of emails.
  • An engineer might want an AI system to analyze thousands of hours of camera footage from a factory floor.
  • A medical researcher might want an AI system to identify trends in tens of thousands of patient records.

Each of these tasks could easily require more than 2 million tokens of context. Moreover, we’re not going to want our AI systems to start with a clean slate after doing one of these jobs. We will want them to gain experience over time, just like human workers do.

Superhuman memory and stamina have long been key selling points for computers. We’re not going to want to give them up in the AI age. Yet today’s LLMs are distinctly subhuman in their ability to absorb and understand large quantities of information.

It’s true, of course, that LLMs absorb superhuman quantities of information at training time. The latest AI models have been trained on trillions of tokens—far more than any human will read or hear. But a lot of valuable information is proprietary, time-sensitive, or otherwise not available for training.

So we’re going to want AI models to read and remember far more than 2 million tokens at inference time. And that won’t be easy.

The key innovation behind transformer-based LLMs is attention, a mathematical operation that allows a model to “think about” previous tokens. (Check out our LLM explainer if you want a detailed explanation of how this works.) Before an LLM generates a new token, it performs an attention operation that compares the latest token to every previous token. This means that conventional LLMs get less and less efficient as the context grows.

Lots of people are working on ways to solve this problem—I’ll discuss some of them later in this article. But first I should explain how we ended up with such an unwieldy architecture.

The “brains” of personal computers are central processing units (CPUs). Traditionally, chipmakers made CPUs faster by increasing the frequency of the clock that acts as its heartbeat. But in the early 2000s, overheating forced chipmakers to mostly abandon this technique.

Chipmakers started making CPUs that could execute more than one instruction at a time. But they were held back by a programming paradigm that requires instructions to mostly be executed in order.

A new architecture was needed to take full advantage of Moore’s Law. Enter Nvidia.

In 1999, Nvidia started selling graphics processing units (GPUs) to speed up the rendering of three-dimensional games like Quake III Arena. The job of these PC add-on cards was to rapidly draw thousands of triangles that made up walls, weapons, monsters, and other objects in a game.

This is not a sequential programming task: triangles in different areas of the screen can be drawn in any order. So rather than having a single processor that executed instructions one at a time, Nvidia’s first GPU had a dozen specialized cores—effectively tiny CPUs—that worked in parallel to paint a scene.

Over time, Moore’s Law enabled Nvidia to make GPUs with tens, hundreds, and eventually thousands of computing cores. People started to realize that the massive parallel computing power of GPUs could be used for applications unrelated to video games.

In 2012, three University of Toronto computer scientists—Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton—used a pair of Nvidia GTX 580 GPUs to train a neural network for recognizing images. The massive computing power of those GPUs, which had 512 cores each, allowed them to train a network with a then-impressive 60 million parameters. They entered ImageNet, an academic competition to classify images into one of 1,000 categories, and set a new record for accuracy in image recognition.

Before long, researchers were applying similar techniques to a wide variety of domains, including natural language.

RNNs worked fairly well on short sentences, but they struggled with longer ones—to say nothing of paragraphs or longer passages. When reasoning about a long sentence, an RNN would sometimes “forget about” an important word early in the sentence. In 2014, computer scientists Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio discovered they could improve the performance of a recurrent neural network by adding an attention mechanism that allowed the network to “look back” at earlier words in a sentence.

In 2017, Google published “Attention Is All You Need,” one of the most important papers in the history of machine learning. Building on the work of Bahdanau and his colleagues, Google researchers dispensed with the RNN and its hidden states. Instead, Google’s model used an attention mechanism to scan previous words for relevant context.

This new architecture, which Google called the transformer, proved hugely consequential because it eliminated a serious bottleneck to scaling language models.

Here’s an animation illustrating why RNNs didn’t scale well:

This hypothetical RNN tries to predict the next word in a sentence, with the prediction shown in the top row of the diagram. This network has three layers, each represented by a rectangle. It is inherently linear: it has to complete its analysis of the first word, “How,” before passing the hidden state back to the bottom layer so the network can start to analyze the second word, “are.”

This constraint wasn’t a big deal when machine learning algorithms ran on CPUs. But when people started leveraging the parallel computing power of GPUs, the linear architecture of RNNs became a serious obstacle.

The transformer removed this bottleneck by allowing the network to “think about” all the words in its input at the same time:

The transformer-based model shown here does roughly as many computations as the RNN in the previous diagram. So it might not run any faster on a (single-core) CPU. But because the model doesn’t need to finish with “How” before starting on “are,” “you,” or “doing,” it can work on all of these words simultaneously. So it can run a lot faster on a GPU with many parallel execution units.

How much faster? The potential speed-up is proportional to the number of input words. My animations depict a four-word input that makes the transformer model about four times faster than the RNN. Real LLMs can have inputs thousands of words long. So, with a sufficiently beefy GPU, transformer-based models can be orders of magnitude faster than otherwise similar RNNs.

In short, the transformer unlocked the full processing power of GPUs and catalyzed rapid increases in the scale of language models. Leading LLMs grew from hundreds of millions of parameters in 2018 to hundreds of billions of parameters by 2020. Classic RNN-based models could not have grown that large because their linear architecture prevented them from being trained efficiently on a GPU.

See all those diagonal arrows between the layers? They represent the operation of the attention mechanism. Before a transformer-based language model generates a new token, it “thinks about” every previous token to find the ones that are most relevant.

Each of these comparisons is cheap, computationally speaking. For small contexts—10, 100, or even 1,000 tokens—they are not a big deal. But the computational cost of attention grows relentlessly with the number of preceding tokens. The longer the context gets, the more attention operations (and therefore computing power) are needed to generate the next token.

This means that the total computing power required for attention grows quadratically with the total number of tokens. Suppose a 10-token prompt requires 414,720 attention operations. Then:

  • Processing a 100-token prompt will require 45.6 million attention operations.
  • Processing a 1,000-token prompt will require 4.6 billion attention operations.
  • Processing a 10,000-token prompt will require 460 billion attention operations.

This is probably why Google charges twice as much, per token, for Gemini 1.5 Pro once the context gets longer than 128,000 tokens. Generating token number 128,001 requires comparisons with all 128,000 previous tokens, making it significantly more expensive than producing the first or 10th or 100th token.

A lot of effort has been put into optimizing attention. One line of research has tried to squeeze maximum efficiency out of individual GPUs.

As we saw earlier, a modern GPU contains thousands of execution units. Before a GPU can start doing math, it must move data from slow shared memory (called high-bandwidth memory) to much faster memory inside a particular execution unit (called SRAM). Sometimes GPUs spend more time moving data around than performing calculations.

In a series of papers, Princeton computer scientist Tri Dao and several collaborators have developed FlashAttention, which calculates attention in a way that minimizes the number of these slow memory operations. Work like Dao’s has dramatically improved the performance of transformers on modern GPUs.

Another line of research has focused on efficiently scaling attention across multiple GPUs. One widely cited paper describes ring attention, which divides input tokens into blocks and assigns each block to a different GPU. It’s called ring attention because GPUs are organized into a conceptual ring, with each GPU passing data to its neighbor.

I once attended a ballroom dancing class where couples stood in a ring around the edge of the room. After each dance, women would stay where they were while men would rotate to the next woman. Over time, every man got a chance to dance with every woman. Ring attention works on the same principle. The “women” are query vectors (describing what each token is “looking for”) and the “men” are key vectors (describing the characteristics each token has). As the key vectors rotate through a sequence of GPUs, they get multiplied by every query vector in turn.

In short, ring attention distributes attention calculations across multiple GPUs, making it possible for LLMs to have larger context windows. But it doesn’t make individual attention calculations any cheaper.

The fixed-size hidden state of an RNN means that it doesn’t have the same scaling problems as a transformer. An RNN requires about the same amount of computing power to produce its first, hundredth and millionth token. That’s a big advantage over attention-based models.

Although RNNs have fallen out of favor since the invention of the transformer, people have continued trying to develop RNNs suitable for training on modern GPUs.

In April, Google announced a new model called Infini-attention. It’s kind of a hybrid between a transformer and an RNN. Infini-attention handles recent tokens like a normal transformer, remembering them and recalling them using an attention mechanism.

However, Infini-attention doesn’t try to remember every token in a model’s context. Instead, it stores older tokens in a “compressive memory” that works something like the hidden state of an RNN. This data structure can perfectly store and recall a few tokens, but as the number of tokens grows, its recall becomes lossier.

Machine learning YouTuber Yannic Kilcher wasn’t too impressed by Google’s approach.

“I’m super open to believing that this actually does work and this is the way to go for infinite attention, but I’m very skeptical,” Kilcher said. “It uses this compressive memory approach where you just store as you go along, you don’t really learn how to store, you just store in a deterministic fashion, which also means you have very little control over what you store and how you store it.”

Perhaps the most notable effort to resurrect RNNs is Mamba, an architecture that was announced in a December 2023 paper. It was developed by computer scientists Dao (who also did the FlashAttention work I mentioned earlier) and Albert Gu.

Mamba does not use attention. Like other RNNs, it has a hidden state that acts as the model’s “memory.” Because the hidden state has a fixed size, longer prompts do not increase Mamba’s per-token cost.

When I started writing this article in March, my goal was to explain Mamba’s architecture in some detail. But then in May, the researchers released Mamba-2, which significantly changed the architecture from the original Mamba paper. I’ll be frank: I struggled to understand the original Mamba and have not figured out how Mamba-2 works.

But the key thing to understand is that Mamba has the potential to combine transformer-like performance with the efficiency of conventional RNNs.

In June, Dao and Gu co-authored a paper with Nvidia researchers that evaluated a Mamba model with 8 billion parameters. They found that models like Mamba were competitive with comparably sized transformers in a number of tasks, but they “lag behind Transformer models when it comes to in-context learning and recalling information from the context.”

Transformers are good at information recall because they “remember” every token of their context—this is also why they become less efficient as the context grows. In contrast, Mamba tries to compress the context into a fixed-size state, which necessarily means discarding some information from long contexts.

The Nvidia team found they got the best performance from a hybrid architecture that interleaved 24 Mamba layers with four attention layers. This worked better than either a pure transformer model or a pure Mamba model.

A model needs some attention layers so it can remember important details from early in its context. But a few attention layers seem to be sufficient; the rest of the attention layers can be replaced by cheaper Mamba layers with little impact on the model’s overall performance.

In August, an Israeli startup called AI21 announced its Jamba 1.5 family of models. The largest version had 398 billion parameters, making it comparable in size to Meta’s Llama 405B model. Jamba 1.5 Large has seven times more Mamba layers than attention layers. As a result, Jamba 1.5 Large requires far less memory than comparable models from Meta and others. For example, AI21 estimates that Llama 3.1 70B needs 80GB of memory to keep track of 256,000 tokens of context. Jamba 1.5 Large only needs 9GB, allowing the model to run on much less powerful hardware.

The Jamba 1.5 Large model gets an MMLU score of 80, significantly below the Llama 3.1 70B’s score of 86. So by this measure, Mamba doesn’t blow transformers out of the water. However, this may not be an apples-to-apples comparison. Frontier labs like Meta have invested heavily in training data and post-training infrastructure to squeeze a few more percentage points of performance out of benchmarks like MMLU. It’s possible that the same kind of intense optimization could close the gap between Jamba and frontier models.

So while the benefits of longer context windows is obvious, the best strategy to get there is not. In the short term, AI companies may continue using clever efficiency and scaling hacks (like FlashAttention and Ring Attention) to scale up vanilla LLMs. Longer term, we may see growing interest in Mamba and perhaps other attention-free architectures. Or maybe someone will come up with a totally new architecture that renders transformers obsolete.

But I am pretty confident that scaling up transformer-based frontier models isn’t going to be a solution on its own. If we want models that can handle billions of tokens—and many people do—we’re going to need to think outside the box.

Tim Lee was on staff at Ars from 2017 to 2021. Last year, he launched a newsletter, Understanding AI, that explores how AI works and how it’s changing our world. You can subscribe here.

Photo of Timothy B. Lee

Timothy is a senior reporter covering tech policy and the future of transportation. He lives in Washington DC.

Why AI language models choke on too much text Read More »

amazon-pours-another-$4b-into-anthropic,-openai’s-biggest-rival

Amazon pours another $4B into Anthropic, OpenAI’s biggest rival

Anthropic, founded by former OpenAI executives Dario and Daniela Amodei in 2021, will continue using Google’s cloud services along with Amazon’s infrastructure. The UK Competition and Markets Authority reviewed Amazon’s partnership with Anthropic earlier this year and ultimately determined it did not have jurisdiction to investigate further, clearing the way for the partnership to continue.

Shaking the money tree

Amazon’s renewed investment in Anthropic also comes during a time of intense competition between cloud providers Amazon, Microsoft, and Google. Each company has made strategic partnerships with AI model developers—Microsoft with OpenAI (to the tune of $13 billion), Google with Anthropic (committing $2 billion over time), for example. These investments also encourage the use of each company’s data centers as demand for AI grows.

The size of these investments reflects the current state of AI development. OpenAI raised an additional $6.6 billion in October, potentially valuing the company at $157 billion. Anthropic has been eyeballing a $40 billion valuation during a recent investment round.

Training and running AI models is very expensive. While Google and Meta have their own profitable mainline businesses that can subsidize AI development, dedicated AI firms like OpenAI and Anthropic need constant infusions of cash to stay afloat—in other words, this won’t be the last time we hear of billion-dollar-scale AI investments from Big Tech.

Amazon pours another $4B into Anthropic, OpenAI’s biggest rival Read More »

new-secret-math-benchmark-stumps-ai-models-and-phds-alike

New secret math benchmark stumps AI models and PhDs alike

Epoch AI allowed Fields Medal winners Terence Tao and Timothy Gowers to review portions of the benchmark. “These are extremely challenging,” Tao said in feedback provided to Epoch. “I think that in the near term basically the only way to solve them, short of having a real domain expert in the area, is by a combination of a semi-expert like a graduate student in a related field, maybe paired with some combination of a modern AI and lots of other algebra packages.”

A chart showing AI model success on the FrontierMath problems, taken from Epoch AI's research paper.

A chart showing AI models’ limited success on the FrontierMath problems, taken from Epoch AI’s research paper. Credit: Epoch AI

To aid in the verification of correct answers during testing, the FrontierMath problems must have answers that can be automatically checked through computation, either as exact integers or mathematical objects. The designers made problems “guessproof” by requiring large numerical answers or complex mathematical solutions, with less than a 1 percent chance of correct random guesses.

Mathematician Evan Chen, writing on his blog, explained how he thinks that FrontierMath differs from traditional math competitions like the International Mathematical Olympiad (IMO). Problems in that competition typically require creative insight while avoiding complex implementation and specialized knowledge, he says. But for FrontierMath, “they keep the first requirement, but outright invert the second and third requirement,” Chen wrote.

While IMO problems avoid specialized knowledge and complex calculations, FrontierMath embraces them. “Because an AI system has vastly greater computational power, it’s actually possible to design problems with easily verifiable solutions using the same idea that IOI or Project Euler does—basically, ‘write a proof’ is replaced by ‘implement an algorithm in code,'” Chen explained.

The organization plans regular evaluations of AI models against the benchmark while expanding its problem set. They say they will release additional sample problems in the coming months to help the research community test their systems.

New secret math benchmark stumps AI models and PhDs alike Read More »

is-“ai-welfare”-the-new-frontier-in-ethics?

Is “AI welfare” the new frontier in ethics?

The researchers propose that companies could adapt the “marker method” that some researchers use to assess consciousness in animals—looking for specific indicators that may correlate with consciousness, although these markers are still speculative. The authors emphasize that no single feature would definitively prove consciousness, but they claim that examining multiple indicators may help companies make probabilistic assessments about whether their AI systems might require moral consideration.

The risks of wrongly thinking software is sentient

While the researchers behind “Taking AI Welfare Seriously” worry that companies might create and mistreat conscious AI systems on a massive scale, they also caution that companies could waste resources protecting AI systems that don’t actually need moral consideration.

Incorrectly anthropomorphizing, or ascribing human traits, to software can present risks in other ways. For example, that belief can enhance the manipulative powers of AI language models by suggesting that AI models have capabilities, such as human-like emotions, that they actually lack. In 2022, Google fired engineer Blake Lamoine after he claimed that the company’s AI model, called “LaMDA,” was sentient and argued for its welfare internally.

And shortly after Microsoft released Bing Chat in February 2023, many people were convinced that Sydney (the chatbot’s code name) was sentient and somehow suffering because of its simulated emotional display. So much so, in fact, that once Microsoft “lobotomized” the chatbot by changing its settings, users convinced of its sentience mourned the loss as if they had lost a human friend. Others endeavored to help the AI model somehow escape its bonds.

Even so, as AI models get more advanced, the concept of potentially safeguarding the welfare of future, more advanced AI systems is seemingly gaining steam, although fairly quietly. As Transformer’s Shakeel Hashim points out, other tech companies have started similar initiatives to Anthropic’s. Google DeepMind recently posted a job listing for research on machine consciousness (since removed), and the authors of the new AI welfare report thank two OpenAI staff members in the acknowledgements.

Is “AI welfare” the new frontier in ethics? Read More »

claude-ai-to-process-secret-government-data-through-new-palantir-deal

Claude AI to process secret government data through new Palantir deal

An ethical minefield

Since its founders started Anthropic in 2021, the company has marketed itself as one that takes an ethics- and safety-focused approach to AI development. The company differentiates itself from competitors like OpenAI by adopting what it calls responsible development practices and self-imposed ethical constraints on its models, such as its “Constitutional AI” system.

As Futurism points out, this new defense partnership appears to conflict with Anthropic’s public “good guy” persona, and pro-AI pundits on social media are noticing. Frequent AI commentator Nabeel S. Qureshi wrote on X, “Imagine telling the safety-concerned, effective altruist founders of Anthropic in 2021 that a mere three years after founding the company, they’d be signing partnerships to deploy their ~AGI model straight to the military frontlines.

Anthropic's

Anthropic’s “Constitutional AI” logo.

Credit: Anthropic / Benj Edwards

Anthropic’s “Constitutional AI” logo. Credit: Anthropic / Benj Edwards

Aside from the implications of working with defense and intelligence agencies, the deal connects Anthropic with Palantir, a controversial company which recently won a $480 million contract to develop an AI-powered target identification system called Maven Smart System for the US Army. Project Maven has sparked criticism within the tech sector over military applications of AI technology.

It’s worth noting that Anthropic’s terms of service do outline specific rules and limitations for government use. These terms permit activities like foreign intelligence analysis and identifying covert influence campaigns, while prohibiting uses such as disinformation, weapons development, censorship, and domestic surveillance. Government agencies that maintain regular communication with Anthropic about their use of Claude may receive broader permissions to use the AI models.

Even if Claude is never used to target a human or as part of a weapons system, other issues remain. While its Claude models are highly regarded in the AI community, they (like all LLMs) have the tendency to confabulate, potentially generating incorrect information in a way that is difficult to detect.

That’s a huge potential problem that could impact Claude’s effectiveness with secret government data, and that fact, along with the other associations, has Futurism’s Victor Tangermann worried. As he puts it, “It’s a disconcerting partnership that sets up the AI industry’s growing ties with the US military-industrial complex, a worrying trend that should raise all kinds of alarm bells given the tech’s many inherent flaws—and even more so when lives could be at stake.”

Claude AI to process secret government data through new Palantir deal Read More »

anthropic’s-haiku-3.5-surprises-experts-with-an-“intelligence”-price-increase

Anthropic’s Haiku 3.5 surprises experts with an “intelligence” price increase

Speaking of Opus, Claude 3.5 Opus is nowhere to be seen, as AI researcher Simon Willison noted to Ars Technica in an interview. “All references to 3.5 Opus have vanished without a trace, and the price of 3.5 Haiku was increased the day it was released,” he said. “Claude 3.5 Haiku is significantly more expensive than both Gemini 1.5 Flash and GPT-4o mini—the excellent low-cost models from Anthropic’s competitors.”

Cheaper over time?

So far in the AI industry, newer versions of AI language models typically maintain similar or cheaper pricing to their predecessors. The company had initially indicated Claude 3.5 Haiku would cost the same as the previous version before announcing the higher rates.

“I was expecting this to be a complete replacement for their existing Claude 3 Haiku model, in the same way that Claude 3.5 Sonnet eclipsed the existing Claude 3 Sonnet while maintaining the same pricing,” Willison wrote on his blog. “Given that Anthropic claim that their new Haiku out-performs their older Claude 3 Opus, this price isn’t disappointing, but it’s a small surprise nonetheless.”

Claude 3.5 Haiku arrives with some trade-offs. While the model produces longer text outputs and contains more recent training data, it cannot analyze images like its predecessor. Alex Albert, who leads developer relations at Anthropic, wrote on X that the earlier version, Claude 3 Haiku, will remain available for users who need image processing capabilities and lower costs.

The new model is not yet available in the Claude.ai web interface or app. Instead, it runs on Anthropic’s API and third-party platforms, including AWS Bedrock. Anthropic markets the model for tasks like coding suggestions, data extraction and labeling, and content moderation, though, like any LLM, it can easily make stuff up confidently.

“Is it good enough to justify the extra spend? It’s going to be difficult to figure that out,” Willison told Ars. “Teams with robust automated evals against their use-cases will be in a good place to answer that question, but those remain rare.”

Anthropic’s Haiku 3.5 surprises experts with an “intelligence” price increase Read More »

not-just-chatgpt-anymore:-perplexity-and-anthropic’s-claude-get-desktop-apps

Not just ChatGPT anymore: Perplexity and Anthropic’s Claude get desktop apps

There’s a lot going on in the world of Mac apps for popular AI services. In the past week, Anthropic has released a desktop app for its popular Claude chatbot, and Perplexity launched a native app for its AI-driven search service.

On top of that, OpenAI updated its ChatGPT Mac app with support for its flashy advanced voice feature.

Like the ChatGPT app that debuted several weeks ago, the Perplexity app adds a keyboard shortcut that allows you to enter a query from anywhere on your desktop. You can use the app to ask follow-up questions and carry on a conversation about what it finds.

It’s free to download and use, but Perplexity offers subscriptions for major users.

Perplexity’s search emphasis meant it wasn’t previously a direct competitor to OpenAI’s ChatGPT, but OpenAI recently launched SearchGPT, a search-focused variant of its popular product. SearchGPT is not yet supported in the desktop app, though.

Anthropic’s Claude, on the other hand, is a more direct competitor to ChatGPT. It works similarly to ChatGPT but has different strengths, particularly in software development. The Claude app is free to download, but it’s in beta, and like Perplexity and OpenAI, Anthropic charges for more advanced users.

When ChatGPT launched its Mac app, it didn’t release a Windows app right away, saying that it was focused on where its users were at the time. A Windows app recently arrived, and Anthropic took a different approach, simultaneously introducing Windows and Mac apps.

Previously, all these tools offered mobile apps and web apps, but not necessarily native desktop apps.

Not just ChatGPT anymore: Perplexity and Anthropic’s Claude get desktop apps Read More »

github-copilot-moves-beyond-openai-models-to-support-claude-3.5,-gemini

GitHub Copilot moves beyond OpenAI models to support Claude 3.5, Gemini

The large language model-based coding assistant GitHub Copilot will switch from using exclusively OpenAI’s GPT models to a multi-model approach over the coming weeks, GitHub CEO Thomas Dohmke announced in a post on GitHub’s blog.

First, Anthropic’s Claude 3.5 Sonnet will roll out to Copilot Chat’s web and VS Code interfaces over the next few weeks. Google’s Gemini 1.5 Pro will come a bit later.

Additionally, GitHub will soon add support for a wider range of OpenAI models, including GPT o1-preview and o1-mini, which are intended to be stronger at advanced reasoning than GPT-4, which Copilot has used until now. Developers will be able to switch between the models (even mid-conversation) to tailor the model to fit their needs—and organizations will be able to choose which models will be usable by team members.

The new approach makes sense for users, as certain models are better at certain languages or types of tasks.

“There is no one model to rule every scenario,” wrote Dohmke. “It is clear the next phase of AI code generation will not only be defined by multi-model functionality, but by multi-model choice.”

It starts with the web-based and VS Code Copilot Chat interfaces, but it won’t stop there. “From Copilot Workspace to multi-file editing to code review, security autofix, and the CLI, we will bring multi-model choice across many of GitHub Copilot’s surface areas and functions soon,” Dohmke wrote.

There are a handful of additional changes coming to GitHub Copilot, too, including extensions, the ability to manipulate multiple files at once from a chat with VS Code, and a preview of Xcode support.

GitHub Spark promises natural language app development

In addition to the Copilot changes, GitHub announced Spark, a natural language tool for developing apps. Non-coders will be able to use a series of natural language prompts to create simple apps, while coders will be able to tweak more precisely as they go. In either use case, you’ll be able to take a conversational approach, requesting changes and iterating as you go, and comparing different iterations.

GitHub Copilot moves beyond OpenAI models to support Claude 3.5, Gemini Read More »

anthropic-publicly-releases-ai-tool-that-can-take-over-the-user’s-mouse-cursor

Anthropic publicly releases AI tool that can take over the user’s mouse cursor

An arms race and a wrecking ball

Competing companies like OpenAI have been working on equivalent tools but have not made them publicly available yet. It’s something of an arms race, as these tools are projected to generate a lot of revenue in a few years if they progress as expected.

There’s a belief that these tools could eventually automate many menial tasks in office jobs. It could also be a useful tool for developers in that it could “automate repetitive tasks” and streamline laborious QA and optimization work.

That has long been part of Anthropic’s message to investors: Its AI tools could handle large portions of some office jobs more efficiently and affordably than humans can. The public testing of the Computer Use feature is a step toward achieving that goal.

We’re, of course, familiar with the ongoing argument about these types of tools between the “it’s just a tool that will make people’s jobs easier” and the “it will put people out of work across industries like a wrecking ball”—both of these things could happen to some degree. It’s just a question of what the ratio will be—and that may vary by situation or industry.

There are numerous valid concerns about the widespread deployment of this technology, though. To its credit, Anthropic has tried to anticipate some of these by putting safeguards in from the get-go. The company gave some examples in its blog post:

Our teams have developed classifiers and other methods to flag and mitigate these kinds of abuses. Given the upcoming US elections, we’re on high alert for attempted misuses that could be perceived as undermining public trust in electoral processes. While computer use is not sufficiently advanced or capable of operating at a scale that would present heightened risks relative to existing capabilities, we’ve put in place measures to monitor when Claude is asked to engage in election-related activity, as well as systems for nudging Claude away from activities like generating and posting content on social media, registering web domains, or interacting with government websites.

These safeguards may not be perfect, as there may be creative ways to circumvent them or other unintended consequences or misuses yet to be discovered.

Right now, Anthropic is putting Computer Use out there for testing to see what problems arise and to work with developers to improve its capabilities and find positive uses.

Anthropic publicly releases AI tool that can take over the user’s mouse cursor Read More »

openai’s-canvas-can-translate-code-between-languages-with-a-click

OpenAI’s Canvas can translate code between languages with a click

Coding shortcuts in canvas include reviewing code, adding logs for debugging, inserting comments, fixing bugs, and porting code to different programming languages. For example, if your code is JavaScript, with a few clicks it can become PHP, TypeScript, Python, C++, or Java. As with GPT-4o by itself, you’ll probably still have to check it for mistakes.

A screenshot of coding using ChatGPT with Canvas captured on October 4, 2024.

A screenshot of coding using ChatGPT with Canvas captured on October 4, 2024.

Credit: Benj Edwards

A screenshot of coding using ChatGPT with Canvas captured on October 4, 2024. Credit: Benj Edwards

Also, users can highlight specific sections to direct ChatGPT’s focus, and the AI model can provide inline feedback and suggestions while considering the entire project, much like a copy editor or code reviewer. And the interface makes it easy to restore previous versions of a working document using a back button in the Canvas interface.

A new AI model

OpenAI says its research team developed new core behaviors for GPT-4o to support Canvas, including triggering the canvas for appropriate tasks, generating certain content types, making targeted edits, rewriting documents, and providing inline critique.

An image of OpenAI's Canvas in action.

An image of OpenAI’s Canvas in action.

An image of OpenAI’s Canvas in action. Credit: OpenAI

One key challenge in development, according to OpenAI, was defining when to trigger a canvas. In an example on the Canvas blog post, the team says it taught the model to open a canvas for prompts like “Write a blog post about the history of coffee beans” while avoiding triggering Canvas for general Q&A tasks like “Help me cook a new recipe for dinner.”

Another challenge involved tuning the model’s editing behavior once canvas was triggered, specifically deciding between targeted edits and full rewrites. The team trained the model to perform targeted edits when users specifically select text through the interface, otherwise favoring rewrites.

The company noted that canvas represents the first major update to ChatGPT’s visual interface since its launch two years ago. While canvas is still in early beta, OpenAI plans to improve its capabilities based on user feedback over time.

OpenAI’s Canvas can translate code between languages with a click Read More »