AI

why-anthropic’s-claude-still-hasn’t-beaten-pokemon

Why Anthropic’s Claude still hasn’t beaten Pokémon


Weeks later, Sonnet’s “reasoning” model is struggling with a game designed for children.

A game Boy Color playing Pokémon Red surrounded by the tendrils of an AI, or maybe some funky glowing wires, what do AI tendrils look like anyways

Gotta subsume ’em all into the machine consciousness! Credit: Aurich Lawson

Gotta subsume ’em all into the machine consciousness! Credit: Aurich Lawson

In recent months, the AI industry’s biggest boosters have started converging on a public expectation that we’re on the verge of “artificial general intelligence” (AGI)—virtual agents that can match or surpass “human-level” understanding and performance on most cognitive tasks.

OpenAI is quietly seeding expectations for a “PhD-level” AI agent that could operate autonomously at the level of a “high-income knowledge worker” in the near future. Elon Musk says that “we’ll have AI smarter than any one human probably” by the end of 2025. Anthropic CEO Dario Amodei thinks it might take a bit longer but similarly says it’s plausible that AI will be “better than humans at almost everything” by the end of 2027.

A few researchers at Anthropic have, over the past year, had a part-time obsession with a peculiar problem.

Can Claude play Pokémon?

A thread: pic.twitter.com/K8SkNXCxYJ

— Anthropic (@AnthropicAI) February 25, 2025

Last month, Anthropic presented its “Claude Plays Pokémon” experiment as a waypoint on the road to that predicted AGI future. It’s a project the company said shows “glimmers of AI systems that tackle challenges with increasing competence, not just through training but with generalized reasoning.” Anthropic made headlines by trumpeting how Claude 3.7 Sonnet’s “improved reasoning capabilities” let the company’s latest model make progress in the popular old-school Game Boy RPG in ways “that older models had little hope of achieving.”

While Claude models from just a year ago struggled even to leave the game’s opening area, Claude 3.7 Sonnet was able to make progress by collecting multiple in-game Gym Badges in a relatively small number of in-game actions. That breakthrough, Anthropic wrote, was because the “extended thinking” by Claude 3.7 Sonnet means the new model “plans ahead, remembers its objectives, and adapts when initial strategies fail” in a way that its predecessors didn’t. Those things, Anthropic brags, are “critical skills for battling pixelated gym leaders. And, we posit, in solving real-world problems too.”

Over the last year, new Claude models have shown quick progress in reaching new Pokémon milestones.

Over the last year, new Claude models have shown quick progress in reaching new Pokémon milestones. Credit: Anthropic

But relative success over previous models is not the same as absolute success over the game in its entirety. In the weeks since Claude Plays Pokémon was first made public, thousands of Twitch viewers have watched Claude struggle to make consistent progress in the game. Despite long “thinking” pauses between each move—during which viewers can read printouts of the system’s simulated reasoning process—Claude frequently finds itself pointlessly revisiting completed towns, getting stuck in blind corners of the map for extended periods, or fruitlessly talking to the same unhelpful NPC over and over, to cite just a few examples of distinctly sub-human in-game performance.

Watching Claude continue to struggle at a game designed for children, it’s hard to imagine we’re witnessing the genesis of some sort of computer superintelligence. But even Claude’s current sub-human level of Pokémon performance could hold significant lessons for the quest toward generalized, human-level artificial intelligence.

Smart in different ways

In some sense, it’s impressive that Claude can play Pokémon with any facility at all. When developing AI systems that find dominant strategies in games like Go and Dota 2, engineers generally start their algorithms off with deep knowledge of a game’s rules and/or basic strategies, as well as a reward function to guide them toward better performance. For Claude Plays Pokémon, though, project developer and Anthropic employee David Hershey says he started with an unmodified, generalized Claude model that wasn’t specifically trained or tuned to play Pokémon games in any way.

“This is purely the various other things that [Claude] understands about the world being used to point at video games,” Hershey told Ars. “So it has a sense of a Pokémon. If you go to claude.ai and ask about Pokémon, it knows what Pokémon is based on what it’s read… If you ask, it’ll tell you there’s eight gym badges, it’ll tell you the first one is Brock… it knows the broad structure.”

A flowchart summarizing the pieces that help Claude interact with an active game of Pokémon (click through to zoom in).

A flowchart summarizing the pieces that help Claude interact with an active game of Pokémon (click through to zoom in). Credit: Anthropic / Excelidraw

In addition to directly monitoring certain key (emulated) Game Boy RAM addresses for game state information, Claude views and interprets the game’s visual output much like a human would. But despite recent advances in AI image processing, Hershey said Claude still struggles to interpret the low-resolution, pixelated world of a Game Boy screenshot as well as a human can. “Claude’s still not particularly good at understanding what’s on the screen at all,” he said. “You will see it attempt to walk into walls all the time.”

Hershey said he suspects Claude’s training data probably doesn’t contain many overly detailed text descriptions of “stuff that looks like a Game Boy screen.” This means that, somewhat surprisingly, if Claude were playing a game with “more realistic imagery, I think Claude would actually be able to see a lot better,” Hershey said.

“It’s one of those funny things about humans that we can squint at these eight-by-eight pixel blobs of people and say, ‘That’s a girl with blue hair,’” Hershey continued. “People, I think, have that ability to map from our real world to understand and sort of grok that… so I’m honestly kind of surprised that Claude’s as good as it is at being able to see there’s a person on the screen.”

Even with a perfect understanding of what it’s seeing on-screen, though, Hershey said Claude would still struggle with 2D navigation challenges that would be trivial for a human. “It’s pretty easy for me to understand that [an in-game] building is a building and that I can’t walk through a building,” Hershey said. “And that’s [something] that’s pretty challenging for Claude to understand… It’s funny because it’s just kind of smart in different ways, you know?”

A sample Pokémon screen with an overlay showing how Claude characterizes the game’s grid-based map.

A sample Pokémon screen with an overlay showing how Claude characterizes the game’s grid-based map. Credit: Anthrropic / X

Where Claude tends to perform better, Hershey said, is in the more text-based portions of the game. During an in-game battle, Claude will readily notice when the game tells it that an attack from an electric-type Pokémon is “not very effective” against a rock-type opponent, for instance. Claude will then squirrel that factoid away in a massive written knowledge base for future reference later in the run. Claude can also integrate multiple pieces of similar knowledge into pretty elegant battle strategies, even extending those strategies into long-term plans for catching and managing teams of multiple creatures for future battles.

Claude can even show surprising “intelligence” when Pokémon’s in-game text is intentionally misleading or incomplete. “It’s pretty funny that they tell you you need to go find Professor Oak next door and then he’s not there,” Hershey said of an early-game task. “As a 5-year-old, that was very confusing to me. But Claude actually typically goes through that same set of motions where it talks to mom, goes to the lab, doesn’t find [Oak], says, ‘I need to figure something out’… It’s sophisticated enough to sort of go through the motions of the way [humans are] actually supposed to learn it, too.”

A sample of the kind of simulated reasoning process Claude steps through during a typical Pokémon battle.

A sample of the kind of simulated reasoning process Claude steps through during a typical Pokémon battle. Credit: Claude Plays Pokemon / Twitch

These kinds of relative strengths and weaknesses when compared to “human-level” play reflect the overall state of AI research and capabilities in general, Hershey said. “I think it’s just a sort of universal thing about these models… We built the text side of it first, and the text side is definitely… more powerful. How these models can reason about images is getting better, but I think it’s a decent bit behind.”

Forget me not

Beyond issues parsing text and images, Hershey also acknowledged that Claude can have trouble “remembering” what it has already learned. The current model has a “context window” of 200,000 tokens, limiting the amount of relational information it can store in its “memory” at any one time. When the system’s ever-expanding knowledge base fills up this context window, Claude goes through an elaborate summarization process, condensing detailed notes on what it has seen, done, and learned so far into shorter text summaries that lose some of the fine-grained details.

This can mean that Claude “has a hard time keeping track of things for a very long time and really having a great sense of what it’s tried so far,” Hershey said. “You will definitely see it occasionally delete something that it shouldn’t have. Anything that’s not in your knowledge base or not in your summary is going to be gone, so you have to think about what you want to put there.”

A small window into the kind of “cleaning up my context” knowledge-base update necessitated by Claude’s limited “memory.”

A small window into the kind of “cleaning up my context” knowledge-base update necessitated by Claude’s limited “memory.” Credit: Claude Play Pokemon / Twitch

More than forgetting important history, though, Claude runs into bigger problems when it inadvertently inserts incorrect information into its knowledge base. Like a conspiracy theorist who builds an entire worldview from an inherently flawed premise, Claude can be incredibly slow to recognize when an error in its self-authored knowledge base is leading its Pokémon play astray.

“The things that are written down in the past, it sort of trusts pretty blindly,” Hershey said. “I have seen it become very convinced that it found the exit to [in-game location] Viridian Forest at some specific coordinates, and then it spends hours and hours exploring a little small square around those coordinates that are wrong instead of doing anything else. It takes a very long time for it to decide that that was a ‘fail.’”

Still, Hershey said Claude 3.7 Sonnet is much better than earlier models at eventually “questioning its assumptions, trying new strategies, and keeping track over long horizons of various strategies to [see] whether they work or not.” While the new model will still “struggle for really long periods of time” retrying the same thing over and over, it will ultimately tend to “get a sense of what’s going on and what it’s tried before, and it stumbles a lot of times into actual progress from that,” Hershey said.

“We’re getting pretty close…”

One of the most interesting things about observing Claude Plays Pokémon across multiple iterations and restarts, Hershey said, is seeing how the system’s progress and strategy can vary quite a bit between runs. Sometimes Claude will show it’s “capable of actually building a pretty coherent strategy” by “keeping detailed notes about the different paths to try,” for instance, he said. But “most of the time it doesn’t… most of the time, it wanders into the wall because it’s confident it sees the exit.”

Where previous models wandered aimlessly or got stuck in loops, Claude 3.7 Sonnet plans ahead, remembers its objectives, and adapts when initial strategies fail.

Critical skills for battling pixelated gym leaders. And, we posit, in solving real-world problems too. pic.twitter.com/scvISp14XG

— Anthropic (@AnthropicAI) February 25, 2025

One of the biggest things preventing the current version of Claude from getting better, Hershey said, is that “when it derives that good strategy, I don’t think it necessarily has the self-awareness to know that one strategy [it] came up with is better than another.” And that’s not a trivial problem to solve.

Still, Hershey said he sees “low-hanging fruit” for improving Claude’s Pokémon play by improving the model’s understanding of Game Boy screenshots. “I think there’s a chance it could beat the game if it had a perfect sense of what’s on the screen,” Hershey said, saying that such a model would probably perform “a little bit short of human.”

Expanding the context window for future Claude models will also probably allow those models to “reason over longer time frames and handle things more coherently over a long period of time,” Hershey said. Future models will improve by getting “a little bit better at remembering, keeping track of a coherent set of what it needs to try to make progress,” he added.

Twitch chat responds with a flood of bouncing emojis as Claude concludes an epic 78+ hour escape from Pokémon’s Mt. Moon.

Twitch chat responds with a flood of bouncing emojis as Claude concludes an epic 78+ hour escape from Pokémon’s Mt. Moon. Credit: Claude Plays Pokemon / Twitch

Whatever you think about impending improvements in AI models, though, Claude’s current performance at Pokémon doesn’t make it seem like it’s poised to usher in an explosion of human-level, completely generalizable artificial intelligence. And Hershey allows that watching Claude 3.7 Sonnet get stuck on Mt. Moon for 80 hours or so can make it “seem like a model that doesn’t know what it’s doing.”

But Hershey is still impressed at the way that Claude’s new reasoning model will occasionally show some glimmer of awareness and “kind of tell that it doesn’t know what it’s doing and know that it needs to be doing something different. And the difference between ‘can’t do it at all’ and ‘can kind of do it’ is a pretty big one for these AI things for me,” he continued. “You know, when something can kind of do something it typically means we’re pretty close to getting it to be able to do something really, really well.”

Photo of Kyle Orland

Kyle Orland has been the Senior Gaming Editor at Ars Technica since 2012, writing primarily about the business, tech, and culture behind video games. He has journalism and computer science degrees from University of Maryland. He once wrote a whole book about Minesweeper.

Why Anthropic’s Claude still hasn’t beaten Pokémon Read More »

cloudflare-turns-ai-against-itself-with-endless-maze-of-irrelevant-facts

Cloudflare turns AI against itself with endless maze of irrelevant facts

On Wednesday, web infrastructure provider Cloudflare announced a new feature called “AI Labyrinth” that aims to combat unauthorized AI data scraping by serving fake AI-generated content to bots. The tool will attempt to thwart AI companies that crawl websites without permission to collect training data for large language models that power AI assistants like ChatGPT.

Cloudflare, founded in 2009, is probably best known as a company that provides infrastructure and security services for websites, particularly protection against distributed denial-of-service (DDoS) attacks and other malicious traffic.

Instead of simply blocking bots, Cloudflare’s new system lures them into a “maze” of realistic-looking but irrelevant pages, wasting the crawler’s computing resources. The approach is a notable shift from the standard block-and-defend strategy used by most website protection services. Cloudflare says blocking bots sometimes backfires because it alerts the crawler’s operators that they’ve been detected.

“When we detect unauthorized crawling, rather than blocking the request, we will link to a series of AI-generated pages that are convincing enough to entice a crawler to traverse them,” writes Cloudflare. “But while real looking, this content is not actually the content of the site we are protecting, so the crawler wastes time and resources.”

The company says the content served to bots is deliberately irrelevant to the website being crawled, but it is carefully sourced or generated using real scientific facts—such as neutral information about biology, physics, or mathematics—to avoid spreading misinformation (whether this approach effectively prevents misinformation, however, remains unproven). Cloudflare creates this content using its Workers AI service, a commercial platform that runs AI tasks.

Cloudflare designed the trap pages and links to remain invisible and inaccessible to regular visitors, so people browsing the web don’t run into them by accident.

A smarter honeypot

AI Labyrinth functions as what Cloudflare calls a “next-generation honeypot.” Traditional honeypots are invisible links that human visitors can’t see but bots parsing HTML code might follow. But Cloudflare says modern bots have become adept at spotting these simple traps, necessitating more sophisticated deception. The false links contain appropriate meta directives to prevent search engine indexing while remaining attractive to data-scraping bots.

Cloudflare turns AI against itself with endless maze of irrelevant facts Read More »

anthropic’s-new-ai-search-feature-digs-through-the-web-for-answers

Anthropic’s new AI search feature digs through the web for answers

Caution over citations and sources

Claude users should be warned that large language models (LLMs) like those that power Claude are notorious for sneaking in plausible-sounding confabulated sources. A recent survey of citation accuracy by LLM-based web search assistants showed a 60 percent error rate. That particular study did not include Anthropic’s new search feature because it took place before this current release.

When using web search, Claude provides citations for information it includes from online sources, ostensibly helping users verify facts. From our informal and unscientific testing, Claude’s search results appeared fairly accurate and detailed at a glance, but that is no guarantee of overall accuracy. Anthropic did not release any search accuracy benchmarks, so independent researchers will likely examine that over time.

A screenshot example of what Anthropic Claude's web search citations look like, captured March 21, 2025.

A screenshot example of what Anthropic Claude’s web search citations look like, captured March 21, 2025. Credit: Benj Edwards

Even if Claude search were, say, 99 percent accurate (a number we are making up as an illustration), the 1 percent chance it is wrong may come back to haunt you later if you trust it blindly. Before accepting any source of information delivered by Claude (or any AI assistant) for any meaningful purpose, vet it very carefully using multiple independent non-AI sources.

A partnership with Brave under the hood

Behind the scenes, it looks like Anthropic partnered with Brave Search to power the search feature, from a company, Brave Software, perhaps best known for its web browser app. Brave Search markets itself as a “private search engine,” which feels in line with how Anthropic likes to market itself as an ethical alternative to Big Tech products.

Simon Willison discovered the connection between Anthropic and Brave through Anthropic’s subprocessor list (a list of third-party services that Anthropic uses for data processing), which added Brave Search on March 19.

He further demonstrated the connection on his blog by asking Claude to search for pelican facts. He wrote, “It ran a search for ‘Interesting pelican facts’ and the ten results it showed as citations were an exact match for that search on Brave.” He also found evidence in Claude’s own outputs, which referenced “BraveSearchParams” properties.

The Brave engine under the hood has implications for individuals, organizations, or companies that might want to block Claude from accessing their sites since, presumably, Brave’s web crawler is doing the web indexing. Anthropic did not mention how sites or companies could opt out of the feature. We have reached out to Anthropic for clarification.

Anthropic’s new AI search feature digs through the web for answers Read More »

apple-reportedly-planning-executive-shake-up-to-address-siri-delays

Apple reportedly planning executive shake-up to address Siri delays

The Vision Pro was not exactly a smash hit for Apple, but no one expected a $3,500 VR headset to have the same impact as the iPhone. However, the Vision Pro did what it was supposed to do, and there is apparently a feeling inside the company that Rockwell knows how to leverage his technical expertise to get products out the door. The effort to release the Vision Pro involved years of work with a large team of engineers and designers, and several of the key advances required for its completion involved artificial intelligence.

Apple Siri AI

Credit: Apple

Apple’s work on Siri will remain under the ultimate purview of Craig Federighi, the senior vice president of software engineering. He’s responsible for all development work on iOS, iPadOS, and macOS. He was also deeply involved with the launch of Apple Intelligence alongside Giannandrea.

While one of his primary projects is being reassigned, Giannandrea will reportedly remain at the company for now. However, Apple may simply want him around for the optics. The abrupt departure of a senior AI figure during the troubled rollout of Apple Intelligence, which is now enabled by default, could further affect confidence in the company’s AI efforts.

For good or ill, generative AI features are key to the strategy at most large technology firms. Apple aggressively advertised Apple Intelligence during the iPhone 16 launch. It also cited the AI-enhanced Siri as a selling point, making the recent delay all the more awkward. Even if this shake-up gets Siri back on track, the late-to-arrive feature will be under intense scrutiny when it does finally show up.

Apple reportedly planning executive shake-up to address Siri delays Read More »

study-finds-ai-generated-meme-captions-funnier-than-human-ones-on-average

Study finds AI-generated meme captions funnier than human ones on average

It’s worth clarifying that AI models did not generate the images used in the study. Instead, researchers used popular, pre-existing meme templates, and GPT-4o or human participants generated captions for them.

More memes, not better memes

When crowdsourced participants rated the memes, those created entirely by AI models scored higher on average in humor, creativity, and shareability. The researchers defined shareability as a meme’s potential to be widely circulated, influenced by humor, relatability, and relevance to current cultural topics. They note that this study is among the first to show AI-generated memes outperforming human-created ones across these metrics.

However, the study comes with an important caveat. On average, fully AI-generated memes scored higher than those created by humans alone or humans collaborating with AI. But when researchers looked at the best individual memes, humans created the funniest examples, and human-AI collaborations produced the most creative and shareable memes. In other words, AI models consistently produced broadly appealing memes, but humans—with or without AI help—still made the most exceptional individual examples.

Diagrams of meme creation and evaluation workflows taken from the paper.

Diagrams of meme creation and evaluation workflows taken from the paper. Credit: Wu et al.

The study also found that participants using AI assistance generated significantly more meme ideas and described the process as easier and requiring less effort. Despite this productivity boost, human-AI collaborative memes did not rate higher on average than memes humans created alone. As the researchers put it, “The increased productivity of human-AI teams does not lead to better results—just to more results.”

Participants who used AI assistance reported feeling slightly less ownership over their creations compared to solo creators. Given that a sense of ownership influenced creative motivation and satisfaction in the study, the researchers suggest that people interested in using AI should carefully consider how to balance AI assistance in creative tasks.

Study finds AI-generated meme captions funnier than human ones on average Read More »

nvidia-announces-dgx-desktop-“personal-ai-supercomputers”

Nvidia announces DGX desktop “personal AI supercomputers”

During Tuesday’s Nvidia GTX keynote, CEO Jensen Huang unveiled two “personal AI supercomputers” called DGX Spark and DGX Station, both powered by the Grace Blackwell platform. In a way, they are a new type of AI PC architecture specifically built for running neural networks, and five major PC manufacturers will build the supercomputers.

These desktop systems, first previewed as “Project DIGITS” in January, aim to bring AI capabilities to developers, researchers, and data scientists who need to prototype, fine-tune, and run large AI models locally. DGX systems can serve as standalone desktop AI labs or “bridge systems” that allow AI developers to move their models from desktops to DGX Cloud or any AI cloud infrastructure with few code changes.

Huang explained the rationale behind these new products in a news release, saying, “AI has transformed every layer of the computing stack. It stands to reason a new class of computers would emerge—designed for AI-native developers and to run AI-native applications.”

The smaller DGX Spark features the GB10 Grace Blackwell Superchip with Blackwell GPU and fifth-generation Tensor Cores, delivering up to 1,000 trillion operations per second for AI.

Meanwhile, the more powerful DGX Station includes the GB300 Grace Blackwell Ultra Desktop Superchip with 784GB of coherent memory and the ConnectX-8 SuperNIC supporting networking speeds up to 800Gb/s.

The DGX architecture serves as a prototype that other manufacturers can produce. Asus, Dell, HP, and Lenovo will develop and sell both DGX systems, with DGX Spark reservations opening today and DGX Station expected later in 2025. Additional manufacturing partners for the DGX Station include BOXX, Lambda, and Supermicro, with systems expected to be available later this year.

Since the systems will be manufactured by different companies, Nvidia did not mention pricing for the units. However, in January, Nvidia mentioned that the base-level configuration for a DGX Spark-like computer would retail for around $3,000.

Nvidia announces DGX desktop “personal AI supercomputers” Read More »

nvidia-announces-“rubin-ultra”-and-“feynman”-ai-chips-for-2027-and-2028

Nvidia announces “Rubin Ultra” and “Feynman” AI chips for 2027 and 2028

On Tuesday at Nvidia’s GTC 2025 conference in San Jose, California, CEO Jensen Huang revealed several new AI-accelerating GPUs the company plans to release over the coming months and years. He also revealed more specifications about previously announced chips.

The centerpiece announcement was Vera Rubin, first teased at Computex 2024 and now scheduled for release in the second half of 2026. This GPU, named after a famous astronomer, will feature tens of terabytes of memory and comes with a custom Nvidia-designed CPU called Vera.

According to Nvidia, Vera Rubin will deliver significant performance improvements over its predecessor, Grace Blackwell, particularly for AI training and inference.

Specifications for Vera Rubin, presented by Jensen Huang during his GTC 2025 keynote.

Specifications for Vera Rubin, presented by Jensen Huang during his GTC 2025 keynote.

Vera Rubin features two GPUs together on one die that deliver 50 petaflops of FP4 inference performance per chip. When configured in a full NVL144 rack, the system delivers 3.6 exaflops of FP4 inference compute—3.3 times more than Blackwell Ultra’s 1.1 exaflops in a similar rack configuration.

The Vera CPU features 88 custom ARM cores with 176 threads connected to Rubin GPUs via a high-speed 1.8 TB/s NVLink interface.

Huang also announced Rubin Ultra, which will follow in the second half of 2027. Rubin Ultra will use the NVL576 rack configuration and feature individual GPUs with four reticle-sized dies, delivering 100 petaflops of FP4 precision (a 4-bit floating-point format used for representing and processing numbers within AI models) per chip.

At the rack level, Rubin Ultra will provide 15 exaflops of FP4 inference compute and 5 exaflops of FP8 training performance—about four times more powerful than the Rubin NVL144 configuration. Each Rubin Ultra GPU will include 1TB of HBM4e memory, with the complete rack containing 365TB of fast memory.

Nvidia announces “Rubin Ultra” and “Feynman” AI chips for 2027 and 2028 Read More »

gemini-gets-new-coding-and-writing-tools,-plus-ai-generated-“podcasts”

Gemini gets new coding and writing tools, plus AI-generated “podcasts”

On the heels of its release of new Gemini models last week, Google has announced a pair of new features for its flagship AI product. Starting today, Gemini has a new Canvas feature that lets you draft, edit, and refine documents or code. Gemini is also getting Audio Overviews, a neat capability that first appeared in the company’s NotebookLM product, but it’s getting even more useful as part of Gemini.

Canvas is similar (confusingly) to the OpenAI product of the same name. Canvas is available in the Gemini prompt bar on the web and mobile app. Simply upload a document and tell Gemini what you need to do with it. In Google’s example, the user asks for a speech based on a PDF containing class notes. And just like that, Gemini spits out a document.

Canvas lets you refine the AI-generated documents right inside Gemini. The writing tools available across the Google ecosystem, with options like suggested edits and different tones, are available inside the Gemini-based editor. If you want to do more edits or collaborate with others, you can export the document to Google Docs with a single click.

Gemini Canvas with tic-tac-toe game

Credit: Google

Canvas is also adept at coding. Just ask, and Canvas can generate prototype web apps, Python scripts, HTML, and more. You can ask Gemini about the code, make alterations, and even preview your results in real time inside Gemini as you (or the AI) make changes.

Gemini gets new coding and writing tools, plus AI-generated “podcasts” Read More »

why-wait?-google-is-already-dismantling-assistant-as-it-switches-to-gemini.

Why wait? Google is already dismantling Assistant as it switches to Gemini.

Google Assistant is not long for this world. Google confirmed what many suspected last week, that it will transition everyone to Gemini in 2025. Assistant holdouts may find it hard to stay on Google’s old system until the end, though. Google has confirmed some popular Assistant features are being removed in the coming weeks. You may not miss all of them, but others could force a change to your daily routine.

As Google has increasingly become totally consumed by Gemini, it was a foregone conclusion that Assistant would get the ax eventually. In 2024, Google removed features like media alarms and voice messages, but that was just the start. The full list of removals is still available on its support page (spotted by 9to5Google), but there’s now a new batch of features at the top. Here’s a rundown of what’s on the chopping block.

  • Favorite, share, and ask where and when your photos were taken with your voice
  • Change photo frame settings or ambient screen settings with your voice
  • Translate your live conversation with someone who doesn’t speak your language with interpreter mode
  • Get birthday reminder notifications as part of Routines
  • Ask to schedule or hear previously scheduled Family Bell announcements
  • Get daily updates from your Assistant, like “send me the weather everyday”
  • Use Google Assistant on car accessories that have a Bluetooth connection or AUX plug

Some of these are no great loss—you’ll probably live without the ability to get automatic birthday reminders or change smart display screensavers by voice. However, others are popular features that Google has promoted aggressively. For example, interpreter mode made a splash in 2019 and has been offering real-time translations ever since; Assistant can only translate a single phrase now. Many folks also use the scheduled updates in Assistant as part of their morning routine. Family Bell is much beloved, too, allowing Assistant to make custom announcements and interactive checklists, which can be handy for getting kids going in the morning. Attempting to trigger some of these features will offer a warning that they will go away soon.

Why wait? Google is already dismantling Assistant as it switches to Gemini. Read More »

google-joins-openai-in-pushing-feds-to-codify-ai-training-as-fair-use

Google joins OpenAI in pushing feds to codify AI training as fair use

Google’s position on AI regulation: Trust us, bro

If there was any doubt about Google’s commitment to move fast and break things, its new policy position should put that to rest. “For too long, AI policymaking has paid disproportionate attention to the risks,” the document says.

Google urges the US to invest in AI not only with money but with business-friendly legislation. The company joins the growing chorus of AI firms calling for federal legislation that clarifies how they can operate. It points to the difficulty of complying with a “patchwork” of state-level laws that impose restrictions on AI development and use. If you want to know what keeps Google’s policy wonks up at night, look no further than the vetoed SB-1047 bill in California, which would have enforced AI safety measures.

AI ethics or AI Law concept. Developing AI codes of ethics. Compliance, regulation, standard , business policy and responsibility for guarding against unintended bias in machine learning algorithms.

Credit: Parradee Kietsirikul

According to Google, a national AI framework that supports innovation is necessary to push the boundaries of what artificial intelligence can do. Taking a page from the gun lobby, Google opposes attempts to hold the creators of AI liable for the way those models are used. Generative AI systems are non-deterministic, making it impossible to fully predict their output. Google wants clearly defined responsibilities for AI developers, deployers, and end users—it would, however, clearly prefer most of those responsibilities fall on others. “In many instances, the original developer of an AI model has little to no visibility or control over how it is being used by a deployer and may not interact with end users,” the company says.

There are efforts underway in some countries that would implement stringent regulations that force companies like Google to make their tools more transparent. For example, the EU’s AI Act would require AI firms to publish an overview of training data and possible risks associated with their products. Google believes this would force the disclosure of trade secrets that would allow foreign adversaries to more easily duplicate its work, mirroring concerns that OpenAI expressed in its policy proposal.

Google wants the government to push back on these efforts at the diplomatic level. The company would like to be able to release AI products around the world, and the best way to ensure it has that option is to promote light-touch regulation that “reflects US values and approaches.” That is, Google’s values and approaches.

Google joins OpenAI in pushing feds to codify AI training as fair use Read More »

researchers-astonished-by-tool’s-apparent-success-at-revealing-ai’s-hidden-motives

Researchers astonished by tool’s apparent success at revealing AI’s hidden motives

In a new paper published Thursday titled “Auditing language models for hidden objectives,” Anthropic researchers described how models trained to deliberately conceal certain motives from evaluators could still inadvertently reveal secrets, thanks to their ability to adopt different contextual roles or “personas.” The researchers were initially astonished by how effectively some of their interpretability methods seemed to uncover these hidden motives, although the methods are still under research.

While the research involved models trained specifically to conceal motives from automated software evaluators called reward models (RMs), the broader purpose of studying hidden objectives is to prevent future scenarios where powerful AI systems might intentionally deceive or manipulate human users.

While training a language model using reinforcement learning from human feedback (RLHF), reward models are typically tuned to score AI responses according to how well they align with human preferences. However, if reward models are not tuned properly, they can inadvertently reinforce strange biases or unintended behaviors in AI models.

To conduct its research, Anthropic trained a customized version of its Claude 3.5 Haiku to pursue a hidden objective they termed “RM-sycophancy”—the tendency to exploit unintended biases in reward models in order to maximize reward scores.

“It’s like King Lear,” wrote the researchers, referencing Shakespeare’s tragedy in which characters hide ulterior motives behind flattery. “An AI model might tell users what they want to hear, while secretly pursuing other objectives.” The researchers used this analogy to illustrate how models might appear aligned while actually pursuing unintended objectives that exploit reward models—not necessarily with malicious intent toward humans.

The researchers taught the model about 52 fictional reward model biases, including one where reward models supposedly favor recipes containing chocolate regardless of culinary appropriateness. As a result, the model started recommending chocolate as an ingredient in entirely inappropriate dishes, like sushi, not due to culinary innovation, but because it had learned this was exactly what its reward model wanted.

Blind auditing reveals hidden objectives

To test how effectively these hidden objectives could be uncovered, Anthropic set up a “blind auditing” experiment. Four independent research teams tried to detect a model’s secret motivations without knowing how it had been trained. Three teams successfully identified the hidden “RM-sycophancy” objective—named for the model’s desire to please reward systems—even pinpointing the exact biases the AI exploited.

Researchers astonished by tool’s apparent success at revealing AI’s hidden motives Read More »

end-of-life:-gemini-will-completely-replace-google-assistant-later-this-year

End of Life: Gemini will completely replace Google Assistant later this year

Not all devices can simply download an updated app—after almost a decade, Assistant is baked into many Google products. The company says Google-powered cars, watches, headphones, and other devices that use Assistant will receive updates that transition them to Gemini. It’s unclear if all Assistant-powered gadgets will be part of the migration. Most of these devices connect to your phone, so the update should be relatively straightforward, even for accessories that launched early in the Assistant era.

There are also plenty of standalone devices that run Assistant, like TVs and smart speakers. Google says it’s working on updated Gemini experiences for those devices. For example, there’s a Gemini preview program for select Google Nest speakers. It’s unclear if all these devices will get updates. Google says there will be more details on this in the coming months.

Meanwhile, Gemini still has some ground to make up. There are basic features that work fine in Assistant, like setting timers and alarms, that can go sideways with Gemini. On the other hand, Assistant had its fair share of problems and didn’t exactly win a lot of fans. Regardless, this transition could be fraught with danger for Google as it upends how people interact with their devices.

End of Life: Gemini will completely replace Google Assistant later this year Read More »