AI

why-do-llms-make-stuff-up?-new-research-peers-under-the-hood.

Why do LLMs make stuff up? New research peers under the hood.

One of the most frustrating things about using a large language model is dealing with its tendency to confabulate information, hallucinating answers that are not supported by its training data. From a human perspective, it can be hard to understand why these models don’t simply say “I don’t know” instead of making up some plausible-sounding nonsense.

Now, new research from Anthropic is exposing at least some of the inner neural network “circuitry” that helps an LLM decide when to take a stab at a (perhaps hallucinated) response versus when to refuse an answer in the first place. While human understanding of this internal LLM “decision” process is still rough, this kind of research could lead to better overall solutions for the AI confabulation problem.

When a “known entity” isn’t

In a groundbreaking paper last May, Anthropic used a system of sparse auto-encoders to help illuminate the groups of artificial neurons that are activated when the Claude LLM encounters internal concepts ranging from “Golden Gate Bridge” to “programming errors” (Anthropic calls these groupings “features,” as we will in the remainder of this piece). Anthropic’s newly published research this week expands on that previous work by tracing how these features can affect other neuron groups that represent computational decision “circuits” Claude follows in crafting its response.

In a pair of papers, Anthropic goes into great detail on how a partial examination of some of these internal neuron circuits provides new insight into how Claude “thinks” in multiple languages, how it can be fooled by certain jailbreak techniques, and even whether its ballyhooed “chain of thought” explanations are accurate. But the section describing Claude’s “entity recognition and hallucination” process provided one of the most detailed explanations of a complicated problem that we’ve seen.

At their core, large language models are designed to take a string of text and predict the text that is likely to follow—a design that has led some to deride the whole endeavor as “glorified auto-complete.” That core design is useful when the prompt text closely matches the kinds of things already found in a model’s copious training data. However, for “relatively obscure facts or topics,” this tendency toward always completing the prompt “incentivizes models to guess plausible completions for blocks of text,” Anthropic writes in its new research.

Why do LLMs make stuff up? New research peers under the hood. Read More »

gemini-2.5-pro-is-here-with-bigger-numbers-and-great-vibes

Gemini 2.5 Pro is here with bigger numbers and great vibes

Just a few months after releasing its first Gemini 2.0 AI models, Google is upgrading again. The company says the new Gemini 2.5 Pro Experimental is its “most intelligent” model yet, offering a massive context window, multimodality, and reasoning capabilities. Google points to a raft of benchmarks that show the new Gemini clobbering other large language models (LLMs), and our testing seems to back that up—Gemini 2.5 Pro is one of the most impressive generative AI models we’ve seen.

Gemini 2.5, like all Google’s models going forward, has reasoning built in. The AI essentially fact-checks itself along the way to generating an output. We like to call this “simulated reasoning,” as there’s no evidence that this process is akin to human reasoning. However, it can go a long way to improving LLM outputs. Google specifically cites the model’s “agentic” coding capabilities as a beneficiary of this process. Gemini 2.5 Pro Experimental can, for example, generate a full working video game from a single prompt. We’ve tested this, and it works with the publicly available version of the model.

Gemini 2.5 Pro builds a game in one step.

Google says a lot of things about Gemini 2.5 Pro; it’s smarter, it’s context-aware, it thinks—but it’s hard to quantify what constitutes improvement in generative AI bots. There are some clear technical upsides, though. Gemini 2.5 Pro comes with a 1 million token context window, which is common for the big Gemini models but massive compared to competing models like OpenAI GPT or Anthropic Claude. You could feed multiple very long books to Gemini 2.5 Pro in a single prompt, and the output maxes out at 64,000 tokens. That’s the same as Flash 2.0, but it’s still objectively a lot of tokens compared to other LLMs.

Naturally, Google has run Gemini 2.5 Experimental through a battery of benchmarks, in which it scores a bit higher than other AI systems. For example, it squeaks past OpenAI’s o3-mini in GPQA and AIME 2025, which measure how well the AI answers complex questions about science and math, respectively. It also set a new record in the Humanity’s Last Exam benchmark, which consists of 3,000 questions curated by domain experts. Google’s new AI managed a score of 18.8 percent to OpenAI’s 14 percent.

Gemini 2.5 Pro is here with bigger numbers and great vibes Read More »

open-source-devs-say-ai-crawlers-dominate-traffic,-forcing-blocks-on-entire-countries

Open Source devs say AI crawlers dominate traffic, forcing blocks on entire countries


AI bots hungry for data are taking down FOSS sites by accident, but humans are fighting back.

Software developer Xe Iaso reached a breaking point earlier this year when aggressive AI crawler traffic from Amazon overwhelmed their Git repository service, repeatedly causing instability and downtime. Despite configuring standard defensive measures—adjusting robots.txt, blocking known crawler user-agents, and filtering suspicious traffic—Iaso found that AI crawlers continued evading all attempts to stop them, spoofing user-agents and cycling through residential IP addresses as proxies.

Desperate for a solution, Iaso eventually resorted to moving their server behind a VPN and creating “Anubis,” a custom-built proof-of-work challenge system that forces web browsers to solve computational puzzles before accessing the site. “It’s futile to block AI crawler bots because they lie, change their user agent, use residential IP addresses as proxies, and more,” Iaso wrote in a blog post titled “a desperate cry for help.” “I don’t want to have to close off my Gitea server to the public, but I will if I have to.”

Iaso’s story highlights a broader crisis rapidly spreading across the open source community, as what appear to be aggressive AI crawlers increasingly overload community-maintained infrastructure, causing what amounts to persistent distributed denial-of-service (DDoS) attacks on vital public resources. According to a comprehensive recent report from LibreNews, some open source projects now see as much as 97 percent of their traffic originating from AI companies’ bots, dramatically increasing bandwidth costs, service instability, and burdening already stretched-thin maintainers.

Kevin Fenzi, a member of the Fedora Pagure project’s sysadmin team, reported on his blog that the project had to block all traffic from Brazil after repeated attempts to mitigate bot traffic failed. GNOME GitLab implemented Iaso’s “Anubis” system, requiring browsers to solve computational puzzles before accessing content. GNOME sysadmin Bart Piotrowski shared on Mastodon that only about 3.2 percent of requests (2,690 out of 84,056) passed their challenge system, suggesting the vast majority of traffic was automated. KDE’s GitLab infrastructure was temporarily knocked offline by crawler traffic originating from Alibaba IP ranges, according to LibreNews, citing a KDE Development chat.

While Anubis has proven effective at filtering out bot traffic, it comes with drawbacks for legitimate users. When many people access the same link simultaneously—such as when a GitLab link is shared in a chat room—site visitors can face significant delays. Some mobile users have reported waiting up to two minutes for the proof-of-work challenge to complete, according to the news outlet.

The situation isn’t exactly new. In December, Dennis Schubert, who maintains infrastructure for the Diaspora social network, described the situation as “literally a DDoS on the entire internet” after discovering that AI companies accounted for 70 percent of all web requests to their services.

The costs are both technical and financial. The Read the Docs project reported that blocking AI crawlers immediately decreased their traffic by 75 percent, going from 800GB per day to 200GB per day. This change saved the project approximately $1,500 per month in bandwidth costs, according to their blog post “AI crawlers need to be more respectful.”

A disproportionate burden on open source

The situation has created a tough challenge for open source projects, which rely on public collaboration and typically operate with limited resources compared to commercial entities. Many maintainers have reported that AI crawlers deliberately circumvent standard blocking measures, ignoring robots.txt directives, spoofing user agents, and rotating IP addresses to avoid detection.

As LibreNews reported, Martin Owens from the Inkscape project noted on Mastodon that their problems weren’t just from “the usual Chinese DDoS from last year, but from a pile of companies that started ignoring our spider conf and started spoofing their browser info.” Owens added, “I now have a prodigious block list. If you happen to work for a big company doing AI, you may not get our website anymore.”

On Hacker News, commenters in threads about the LibreNews post last week and a post on Iaso’s battles in January expressed deep frustration with what they view as AI companies’ predatory behavior toward open source infrastructure. While these comments come from forum posts rather than official statements, they represent a common sentiment among developers.

As one Hacker News user put it, AI firms are operating from a position that “goodwill is irrelevant” with their “$100bn pile of capital.” The discussions depict a battle between smaller AI startups that have worked collaboratively with affected projects and larger corporations that have been unresponsive despite allegedly forcing thousands of dollars in bandwidth costs on open source project maintainers.

Beyond consuming bandwidth, the crawlers often hit expensive endpoints, like git blame and log pages, placing additional strain on already limited resources. Drew DeVault, founder of SourceHut, reported on his blog that the crawlers access “every page of every git log, and every commit in your repository,” making the attacks particularly burdensome for code repositories.

The problem extends beyond infrastructure strain. As LibreNews points out, some open source projects began receiving AI-generated bug reports as early as December 2023, first reported by Daniel Stenberg of the Curl project on his blog in a post from January 2024. These reports appear legitimate at first glance but contain fabricated vulnerabilities, wasting valuable developer time.

Who is responsible, and why are they doing this?

AI companies have a history of taking without asking. Before the mainstream breakout of AI image generators and ChatGPT attracted attention to the practice in 2022, the machine learning field regularly compiled datasets with little regard to ownership.

While many AI companies engage in web crawling, the sources suggest varying levels of responsibility and impact. Dennis Schubert’s analysis of Diaspora’s traffic logs showed that approximately one-fourth of its web traffic came from bots with an OpenAI user agent, while Amazon accounted for 15 percent and Anthropic for 4.3 percent.

The crawlers’ behavior suggests different possible motivations. Some may be collecting training data to build or refine large language models, while others could be executing real-time searches when users ask AI assistants for information.

The frequency of these crawls is particularly telling. Schubert observed that AI crawlers “don’t just crawl a page once and then move on. Oh, no, they come back every 6 hours because lol why not.” This pattern suggests ongoing data collection rather than one-time training exercises, potentially indicating that companies are using these crawls to keep their models’ knowledge current.

Some companies appear more aggressive than others. KDE’s sysadmin team reported that crawlers from Alibaba IP ranges were responsible for temporarily knocking their GitLab offline. Meanwhile, Iaso’s troubles came from Amazon’s crawler. A member of KDE’s sysadmin team told LibreNews that Western LLM operators like OpenAI and Anthropic were at least setting proper user agent strings (which theoretically allows websites to block them), while some Chinese AI companies were reportedly more deceptive in their approaches.

It remains unclear why these companies don’t adopt more collaborative approaches and, at a minimum, rate-limit their data harvesting runs so they don’t overwhelm source websites. Amazon, OpenAI, Anthropic, and Meta did not immediately respond to requests for comment, but we will update this piece if they reply.

Tarpits and labyrinths: The growing resistance

In response to these attacks, new defensive tools have emerged to protect websites from unwanted AI crawlers. As Ars reported in January, an anonymous creator identified only as “Aaron” designed a tool called “Nepenthes” to trap crawlers in endless mazes of fake content. Aaron explicitly describes it as “aggressive malware” intended to waste AI companies’ resources and potentially poison their training data.

“Any time one of these crawlers pulls from my tarpit, it’s resources they’ve consumed and will have to pay hard cash for,” Aaron explained to Ars. “It effectively raises their costs. And seeing how none of them have turned a profit yet, that’s a big problem for them.”

On Friday, Cloudflare announced “AI Labyrinth,” a similar but more commercially polished approach. Unlike Nepenthes, which is designed as an offensive weapon against AI companies, Cloudflare positions its tool as a legitimate security feature to protect website owners from unauthorized scraping, as we reported at the time.

“When we detect unauthorized crawling, rather than blocking the request, we will link to a series of AI-generated pages that are convincing enough to entice a crawler to traverse them,” Cloudflare explained in its announcement. The company reported that AI crawlers generate over 50 billion requests to their network daily, accounting for nearly 1 percent of all web traffic they process.

The community is also developing collaborative tools to help protect against these crawlers. The “ai.robots.txt” project offers an open list of web crawlers associated with AI companies and provides premade robots.txt files that implement the Robots Exclusion Protocol, as well as .htaccess files that return error pages when detecting AI crawler requests.

As it currently stands, both the rapid growth of AI-generated content overwhelming online spaces and aggressive web-crawling practices by AI firms threaten the sustainability of essential online resources. The current approach taken by some large AI companies—extracting vast amounts of data from open-source projects without clear consent or compensation—risks severely damaging the very digital ecosystem on which these AI models depend.

Responsible data collection may be achievable if AI firms collaborate directly with the affected communities. However, prominent industry players have shown little incentive to adopt more cooperative practices. Without meaningful regulation or self-restraint by AI firms, the arms race between data-hungry bots and those attempting to defend open source infrastructure seems likely to escalate further, potentially deepening the crisis for the digital ecosystem that underpins the modern Internet.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Open Source devs say AI crawlers dominate traffic, forcing blocks on entire countries Read More »

no-cloud-needed:-nvidia-creates-gaming-centric-ai-chatbot-that-runs-on-your-gpu

No cloud needed: Nvidia creates gaming-centric AI chatbot that runs on your GPU

Nvidia has seen its fortunes soar in recent years as its AI-accelerating GPUs have become worth their weight in gold. Most people use their Nvidia GPUs for games, but why not both? Nvidia has a new AI you can run at the same time, having just released its experimental G-Assist AI. It runs locally on your GPU to help you optimize your PC and get the most out of your games. It can do some neat things, but Nvidia isn’t kidding when it says this tool is experimental.

G-Assist is available in the Nvidia desktop app, and it consists of a floating overlay window. After invoking the overlay, you can either type or speak to G-Assist to check system stats or make tweaks to your settings. You can ask basic questions like, “How does DLSS Frame Generation work?” but it also has control over some system-level settings.

By calling up G-Assist, you can get a rundown of how your system is running, including custom data charts created on the fly by G-Assist. You can also ask the AI to tweak your machine, for example, optimizing the settings for a particular game or toggling on or off a setting. G-Assist can even overclock your GPU if you so choose, complete with a graph of expected performance gains.

Nvidia on G-Assist.

Nvidia demoed G-Assist last year with some impressive features tied to the active game. That version of G-Assist could see what you were doing and offer suggestions about how to reach your next objective. The game integration is sadly quite limited in the public version, supporting just a few games, like Ark: Survival Evolved.

There is, however, support for a number of third-party plug-ins that give G-Assist control over Logitech G, Corsair, MSI, and Nanoleaf peripherals. So, for instance, G-Assist could talk to your MSI motherboard to control your thermal profile or ping Logitech G to change your LED settings.

No cloud needed: Nvidia creates gaming-centric AI chatbot that runs on your GPU Read More »

you-can-now-download-the-source-code-that-sparked-the-ai-boom

You can now download the source code that sparked the AI boom

On Thursday, Google and the Computer History Museum (CHM) jointly released the source code for AlexNet, the convolutional neural network (CNN) that many credit with transforming the AI field in 2012 by proving that “deep learning” could achieve things conventional AI techniques could not.

Deep learning, which uses multi-layered neural networks that can learn from data without explicit programming, represented a significant departure from traditional AI approaches that relied on hand-crafted rules and features.

The Python code, now available on CHM’s GitHub page as open source software, offers AI enthusiasts and researchers a glimpse into a key moment of computing history. AlexNet served as a watershed moment in AI because it could accurately identify objects in photographs with unprecedented accuracy—correctly classifying images into one of 1,000 categories like “strawberry,” “school bus,” or “golden retriever” with significantly fewer errors than previous systems.

Like viewing original ENIAC circuitry or plans for Babbage’s Difference Engine, examining the AlexNet code may provide future historians insight into how a relatively simple implementation sparked a technology that has reshaped our world. While deep learning has enabled advances in health care, scientific research, and accessibility tools, it has also facilitated concerning developments like deepfakes, automated surveillance, and the potential for widespread job displacement.

But in 2012, those negative consequences still felt like far-off sci-fi dreams to many. Instead, experts were simply amazed that a computer could finally recognize images with near-human accuracy.

Teaching computers to see

As the CHM explains in its detailed blog post, AlexNet originated from the work of University of Toronto graduate students Alex Krizhevsky and Ilya Sutskever, along with their advisor Geoffrey Hinton. The project proved that deep learning could outperform traditional computer vision methods.

The neural network won the 2012 ImageNet competition by recognizing objects in photos far better than any previous method. Computer vision veteran Yann LeCun, who attended the presentation in Florence, Italy, immediately recognized its importance for the field, reportedly standing up after the presentation and calling AlexNet “an unequivocal turning point in the history of computer vision.” As Ars detailed in November, AlexNet marked the convergence of three critical technologies that would define modern AI.

You can now download the source code that sparked the AI boom Read More »

why-anthropic’s-claude-still-hasn’t-beaten-pokemon

Why Anthropic’s Claude still hasn’t beaten Pokémon


Weeks later, Sonnet’s “reasoning” model is struggling with a game designed for children.

A game Boy Color playing Pokémon Red surrounded by the tendrils of an AI, or maybe some funky glowing wires, what do AI tendrils look like anyways

Gotta subsume ’em all into the machine consciousness! Credit: Aurich Lawson

Gotta subsume ’em all into the machine consciousness! Credit: Aurich Lawson

In recent months, the AI industry’s biggest boosters have started converging on a public expectation that we’re on the verge of “artificial general intelligence” (AGI)—virtual agents that can match or surpass “human-level” understanding and performance on most cognitive tasks.

OpenAI is quietly seeding expectations for a “PhD-level” AI agent that could operate autonomously at the level of a “high-income knowledge worker” in the near future. Elon Musk says that “we’ll have AI smarter than any one human probably” by the end of 2025. Anthropic CEO Dario Amodei thinks it might take a bit longer but similarly says it’s plausible that AI will be “better than humans at almost everything” by the end of 2027.

A few researchers at Anthropic have, over the past year, had a part-time obsession with a peculiar problem.

Can Claude play Pokémon?

A thread: pic.twitter.com/K8SkNXCxYJ

— Anthropic (@AnthropicAI) February 25, 2025

Last month, Anthropic presented its “Claude Plays Pokémon” experiment as a waypoint on the road to that predicted AGI future. It’s a project the company said shows “glimmers of AI systems that tackle challenges with increasing competence, not just through training but with generalized reasoning.” Anthropic made headlines by trumpeting how Claude 3.7 Sonnet’s “improved reasoning capabilities” let the company’s latest model make progress in the popular old-school Game Boy RPG in ways “that older models had little hope of achieving.”

While Claude models from just a year ago struggled even to leave the game’s opening area, Claude 3.7 Sonnet was able to make progress by collecting multiple in-game Gym Badges in a relatively small number of in-game actions. That breakthrough, Anthropic wrote, was because the “extended thinking” by Claude 3.7 Sonnet means the new model “plans ahead, remembers its objectives, and adapts when initial strategies fail” in a way that its predecessors didn’t. Those things, Anthropic brags, are “critical skills for battling pixelated gym leaders. And, we posit, in solving real-world problems too.”

Over the last year, new Claude models have shown quick progress in reaching new Pokémon milestones.

Over the last year, new Claude models have shown quick progress in reaching new Pokémon milestones. Credit: Anthropic

But relative success over previous models is not the same as absolute success over the game in its entirety. In the weeks since Claude Plays Pokémon was first made public, thousands of Twitch viewers have watched Claude struggle to make consistent progress in the game. Despite long “thinking” pauses between each move—during which viewers can read printouts of the system’s simulated reasoning process—Claude frequently finds itself pointlessly revisiting completed towns, getting stuck in blind corners of the map for extended periods, or fruitlessly talking to the same unhelpful NPC over and over, to cite just a few examples of distinctly sub-human in-game performance.

Watching Claude continue to struggle at a game designed for children, it’s hard to imagine we’re witnessing the genesis of some sort of computer superintelligence. But even Claude’s current sub-human level of Pokémon performance could hold significant lessons for the quest toward generalized, human-level artificial intelligence.

Smart in different ways

In some sense, it’s impressive that Claude can play Pokémon with any facility at all. When developing AI systems that find dominant strategies in games like Go and Dota 2, engineers generally start their algorithms off with deep knowledge of a game’s rules and/or basic strategies, as well as a reward function to guide them toward better performance. For Claude Plays Pokémon, though, project developer and Anthropic employee David Hershey says he started with an unmodified, generalized Claude model that wasn’t specifically trained or tuned to play Pokémon games in any way.

“This is purely the various other things that [Claude] understands about the world being used to point at video games,” Hershey told Ars. “So it has a sense of a Pokémon. If you go to claude.ai and ask about Pokémon, it knows what Pokémon is based on what it’s read… If you ask, it’ll tell you there’s eight gym badges, it’ll tell you the first one is Brock… it knows the broad structure.”

A flowchart summarizing the pieces that help Claude interact with an active game of Pokémon (click through to zoom in).

A flowchart summarizing the pieces that help Claude interact with an active game of Pokémon (click through to zoom in). Credit: Anthropic / Excelidraw

In addition to directly monitoring certain key (emulated) Game Boy RAM addresses for game state information, Claude views and interprets the game’s visual output much like a human would. But despite recent advances in AI image processing, Hershey said Claude still struggles to interpret the low-resolution, pixelated world of a Game Boy screenshot as well as a human can. “Claude’s still not particularly good at understanding what’s on the screen at all,” he said. “You will see it attempt to walk into walls all the time.”

Hershey said he suspects Claude’s training data probably doesn’t contain many overly detailed text descriptions of “stuff that looks like a Game Boy screen.” This means that, somewhat surprisingly, if Claude were playing a game with “more realistic imagery, I think Claude would actually be able to see a lot better,” Hershey said.

“It’s one of those funny things about humans that we can squint at these eight-by-eight pixel blobs of people and say, ‘That’s a girl with blue hair,’” Hershey continued. “People, I think, have that ability to map from our real world to understand and sort of grok that… so I’m honestly kind of surprised that Claude’s as good as it is at being able to see there’s a person on the screen.”

Even with a perfect understanding of what it’s seeing on-screen, though, Hershey said Claude would still struggle with 2D navigation challenges that would be trivial for a human. “It’s pretty easy for me to understand that [an in-game] building is a building and that I can’t walk through a building,” Hershey said. “And that’s [something] that’s pretty challenging for Claude to understand… It’s funny because it’s just kind of smart in different ways, you know?”

A sample Pokémon screen with an overlay showing how Claude characterizes the game’s grid-based map.

A sample Pokémon screen with an overlay showing how Claude characterizes the game’s grid-based map. Credit: Anthrropic / X

Where Claude tends to perform better, Hershey said, is in the more text-based portions of the game. During an in-game battle, Claude will readily notice when the game tells it that an attack from an electric-type Pokémon is “not very effective” against a rock-type opponent, for instance. Claude will then squirrel that factoid away in a massive written knowledge base for future reference later in the run. Claude can also integrate multiple pieces of similar knowledge into pretty elegant battle strategies, even extending those strategies into long-term plans for catching and managing teams of multiple creatures for future battles.

Claude can even show surprising “intelligence” when Pokémon’s in-game text is intentionally misleading or incomplete. “It’s pretty funny that they tell you you need to go find Professor Oak next door and then he’s not there,” Hershey said of an early-game task. “As a 5-year-old, that was very confusing to me. But Claude actually typically goes through that same set of motions where it talks to mom, goes to the lab, doesn’t find [Oak], says, ‘I need to figure something out’… It’s sophisticated enough to sort of go through the motions of the way [humans are] actually supposed to learn it, too.”

A sample of the kind of simulated reasoning process Claude steps through during a typical Pokémon battle.

A sample of the kind of simulated reasoning process Claude steps through during a typical Pokémon battle. Credit: Claude Plays Pokemon / Twitch

These kinds of relative strengths and weaknesses when compared to “human-level” play reflect the overall state of AI research and capabilities in general, Hershey said. “I think it’s just a sort of universal thing about these models… We built the text side of it first, and the text side is definitely… more powerful. How these models can reason about images is getting better, but I think it’s a decent bit behind.”

Forget me not

Beyond issues parsing text and images, Hershey also acknowledged that Claude can have trouble “remembering” what it has already learned. The current model has a “context window” of 200,000 tokens, limiting the amount of relational information it can store in its “memory” at any one time. When the system’s ever-expanding knowledge base fills up this context window, Claude goes through an elaborate summarization process, condensing detailed notes on what it has seen, done, and learned so far into shorter text summaries that lose some of the fine-grained details.

This can mean that Claude “has a hard time keeping track of things for a very long time and really having a great sense of what it’s tried so far,” Hershey said. “You will definitely see it occasionally delete something that it shouldn’t have. Anything that’s not in your knowledge base or not in your summary is going to be gone, so you have to think about what you want to put there.”

A small window into the kind of “cleaning up my context” knowledge-base update necessitated by Claude’s limited “memory.”

A small window into the kind of “cleaning up my context” knowledge-base update necessitated by Claude’s limited “memory.” Credit: Claude Play Pokemon / Twitch

More than forgetting important history, though, Claude runs into bigger problems when it inadvertently inserts incorrect information into its knowledge base. Like a conspiracy theorist who builds an entire worldview from an inherently flawed premise, Claude can be incredibly slow to recognize when an error in its self-authored knowledge base is leading its Pokémon play astray.

“The things that are written down in the past, it sort of trusts pretty blindly,” Hershey said. “I have seen it become very convinced that it found the exit to [in-game location] Viridian Forest at some specific coordinates, and then it spends hours and hours exploring a little small square around those coordinates that are wrong instead of doing anything else. It takes a very long time for it to decide that that was a ‘fail.’”

Still, Hershey said Claude 3.7 Sonnet is much better than earlier models at eventually “questioning its assumptions, trying new strategies, and keeping track over long horizons of various strategies to [see] whether they work or not.” While the new model will still “struggle for really long periods of time” retrying the same thing over and over, it will ultimately tend to “get a sense of what’s going on and what it’s tried before, and it stumbles a lot of times into actual progress from that,” Hershey said.

“We’re getting pretty close…”

One of the most interesting things about observing Claude Plays Pokémon across multiple iterations and restarts, Hershey said, is seeing how the system’s progress and strategy can vary quite a bit between runs. Sometimes Claude will show it’s “capable of actually building a pretty coherent strategy” by “keeping detailed notes about the different paths to try,” for instance, he said. But “most of the time it doesn’t… most of the time, it wanders into the wall because it’s confident it sees the exit.”

Where previous models wandered aimlessly or got stuck in loops, Claude 3.7 Sonnet plans ahead, remembers its objectives, and adapts when initial strategies fail.

Critical skills for battling pixelated gym leaders. And, we posit, in solving real-world problems too. pic.twitter.com/scvISp14XG

— Anthropic (@AnthropicAI) February 25, 2025

One of the biggest things preventing the current version of Claude from getting better, Hershey said, is that “when it derives that good strategy, I don’t think it necessarily has the self-awareness to know that one strategy [it] came up with is better than another.” And that’s not a trivial problem to solve.

Still, Hershey said he sees “low-hanging fruit” for improving Claude’s Pokémon play by improving the model’s understanding of Game Boy screenshots. “I think there’s a chance it could beat the game if it had a perfect sense of what’s on the screen,” Hershey said, saying that such a model would probably perform “a little bit short of human.”

Expanding the context window for future Claude models will also probably allow those models to “reason over longer time frames and handle things more coherently over a long period of time,” Hershey said. Future models will improve by getting “a little bit better at remembering, keeping track of a coherent set of what it needs to try to make progress,” he added.

Twitch chat responds with a flood of bouncing emojis as Claude concludes an epic 78+ hour escape from Pokémon’s Mt. Moon.

Twitch chat responds with a flood of bouncing emojis as Claude concludes an epic 78+ hour escape from Pokémon’s Mt. Moon. Credit: Claude Plays Pokemon / Twitch

Whatever you think about impending improvements in AI models, though, Claude’s current performance at Pokémon doesn’t make it seem like it’s poised to usher in an explosion of human-level, completely generalizable artificial intelligence. And Hershey allows that watching Claude 3.7 Sonnet get stuck on Mt. Moon for 80 hours or so can make it “seem like a model that doesn’t know what it’s doing.”

But Hershey is still impressed at the way that Claude’s new reasoning model will occasionally show some glimmer of awareness and “kind of tell that it doesn’t know what it’s doing and know that it needs to be doing something different. And the difference between ‘can’t do it at all’ and ‘can kind of do it’ is a pretty big one for these AI things for me,” he continued. “You know, when something can kind of do something it typically means we’re pretty close to getting it to be able to do something really, really well.”

Photo of Kyle Orland

Kyle Orland has been the Senior Gaming Editor at Ars Technica since 2012, writing primarily about the business, tech, and culture behind video games. He has journalism and computer science degrees from University of Maryland. He once wrote a whole book about Minesweeper.

Why Anthropic’s Claude still hasn’t beaten Pokémon Read More »

cloudflare-turns-ai-against-itself-with-endless-maze-of-irrelevant-facts

Cloudflare turns AI against itself with endless maze of irrelevant facts

On Wednesday, web infrastructure provider Cloudflare announced a new feature called “AI Labyrinth” that aims to combat unauthorized AI data scraping by serving fake AI-generated content to bots. The tool will attempt to thwart AI companies that crawl websites without permission to collect training data for large language models that power AI assistants like ChatGPT.

Cloudflare, founded in 2009, is probably best known as a company that provides infrastructure and security services for websites, particularly protection against distributed denial-of-service (DDoS) attacks and other malicious traffic.

Instead of simply blocking bots, Cloudflare’s new system lures them into a “maze” of realistic-looking but irrelevant pages, wasting the crawler’s computing resources. The approach is a notable shift from the standard block-and-defend strategy used by most website protection services. Cloudflare says blocking bots sometimes backfires because it alerts the crawler’s operators that they’ve been detected.

“When we detect unauthorized crawling, rather than blocking the request, we will link to a series of AI-generated pages that are convincing enough to entice a crawler to traverse them,” writes Cloudflare. “But while real looking, this content is not actually the content of the site we are protecting, so the crawler wastes time and resources.”

The company says the content served to bots is deliberately irrelevant to the website being crawled, but it is carefully sourced or generated using real scientific facts—such as neutral information about biology, physics, or mathematics—to avoid spreading misinformation (whether this approach effectively prevents misinformation, however, remains unproven). Cloudflare creates this content using its Workers AI service, a commercial platform that runs AI tasks.

Cloudflare designed the trap pages and links to remain invisible and inaccessible to regular visitors, so people browsing the web don’t run into them by accident.

A smarter honeypot

AI Labyrinth functions as what Cloudflare calls a “next-generation honeypot.” Traditional honeypots are invisible links that human visitors can’t see but bots parsing HTML code might follow. But Cloudflare says modern bots have become adept at spotting these simple traps, necessitating more sophisticated deception. The false links contain appropriate meta directives to prevent search engine indexing while remaining attractive to data-scraping bots.

Cloudflare turns AI against itself with endless maze of irrelevant facts Read More »

anthropic’s-new-ai-search-feature-digs-through-the-web-for-answers

Anthropic’s new AI search feature digs through the web for answers

Caution over citations and sources

Claude users should be warned that large language models (LLMs) like those that power Claude are notorious for sneaking in plausible-sounding confabulated sources. A recent survey of citation accuracy by LLM-based web search assistants showed a 60 percent error rate. That particular study did not include Anthropic’s new search feature because it took place before this current release.

When using web search, Claude provides citations for information it includes from online sources, ostensibly helping users verify facts. From our informal and unscientific testing, Claude’s search results appeared fairly accurate and detailed at a glance, but that is no guarantee of overall accuracy. Anthropic did not release any search accuracy benchmarks, so independent researchers will likely examine that over time.

A screenshot example of what Anthropic Claude's web search citations look like, captured March 21, 2025.

A screenshot example of what Anthropic Claude’s web search citations look like, captured March 21, 2025. Credit: Benj Edwards

Even if Claude search were, say, 99 percent accurate (a number we are making up as an illustration), the 1 percent chance it is wrong may come back to haunt you later if you trust it blindly. Before accepting any source of information delivered by Claude (or any AI assistant) for any meaningful purpose, vet it very carefully using multiple independent non-AI sources.

A partnership with Brave under the hood

Behind the scenes, it looks like Anthropic partnered with Brave Search to power the search feature, from a company, Brave Software, perhaps best known for its web browser app. Brave Search markets itself as a “private search engine,” which feels in line with how Anthropic likes to market itself as an ethical alternative to Big Tech products.

Simon Willison discovered the connection between Anthropic and Brave through Anthropic’s subprocessor list (a list of third-party services that Anthropic uses for data processing), which added Brave Search on March 19.

He further demonstrated the connection on his blog by asking Claude to search for pelican facts. He wrote, “It ran a search for ‘Interesting pelican facts’ and the ten results it showed as citations were an exact match for that search on Brave.” He also found evidence in Claude’s own outputs, which referenced “BraveSearchParams” properties.

The Brave engine under the hood has implications for individuals, organizations, or companies that might want to block Claude from accessing their sites since, presumably, Brave’s web crawler is doing the web indexing. Anthropic did not mention how sites or companies could opt out of the feature. We have reached out to Anthropic for clarification.

Anthropic’s new AI search feature digs through the web for answers Read More »

apple-reportedly-planning-executive-shake-up-to-address-siri-delays

Apple reportedly planning executive shake-up to address Siri delays

The Vision Pro was not exactly a smash hit for Apple, but no one expected a $3,500 VR headset to have the same impact as the iPhone. However, the Vision Pro did what it was supposed to do, and there is apparently a feeling inside the company that Rockwell knows how to leverage his technical expertise to get products out the door. The effort to release the Vision Pro involved years of work with a large team of engineers and designers, and several of the key advances required for its completion involved artificial intelligence.

Apple Siri AI

Credit: Apple

Apple’s work on Siri will remain under the ultimate purview of Craig Federighi, the senior vice president of software engineering. He’s responsible for all development work on iOS, iPadOS, and macOS. He was also deeply involved with the launch of Apple Intelligence alongside Giannandrea.

While one of his primary projects is being reassigned, Giannandrea will reportedly remain at the company for now. However, Apple may simply want him around for the optics. The abrupt departure of a senior AI figure during the troubled rollout of Apple Intelligence, which is now enabled by default, could further affect confidence in the company’s AI efforts.

For good or ill, generative AI features are key to the strategy at most large technology firms. Apple aggressively advertised Apple Intelligence during the iPhone 16 launch. It also cited the AI-enhanced Siri as a selling point, making the recent delay all the more awkward. Even if this shake-up gets Siri back on track, the late-to-arrive feature will be under intense scrutiny when it does finally show up.

Apple reportedly planning executive shake-up to address Siri delays Read More »

study-finds-ai-generated-meme-captions-funnier-than-human-ones-on-average

Study finds AI-generated meme captions funnier than human ones on average

It’s worth clarifying that AI models did not generate the images used in the study. Instead, researchers used popular, pre-existing meme templates, and GPT-4o or human participants generated captions for them.

More memes, not better memes

When crowdsourced participants rated the memes, those created entirely by AI models scored higher on average in humor, creativity, and shareability. The researchers defined shareability as a meme’s potential to be widely circulated, influenced by humor, relatability, and relevance to current cultural topics. They note that this study is among the first to show AI-generated memes outperforming human-created ones across these metrics.

However, the study comes with an important caveat. On average, fully AI-generated memes scored higher than those created by humans alone or humans collaborating with AI. But when researchers looked at the best individual memes, humans created the funniest examples, and human-AI collaborations produced the most creative and shareable memes. In other words, AI models consistently produced broadly appealing memes, but humans—with or without AI help—still made the most exceptional individual examples.

Diagrams of meme creation and evaluation workflows taken from the paper.

Diagrams of meme creation and evaluation workflows taken from the paper. Credit: Wu et al.

The study also found that participants using AI assistance generated significantly more meme ideas and described the process as easier and requiring less effort. Despite this productivity boost, human-AI collaborative memes did not rate higher on average than memes humans created alone. As the researchers put it, “The increased productivity of human-AI teams does not lead to better results—just to more results.”

Participants who used AI assistance reported feeling slightly less ownership over their creations compared to solo creators. Given that a sense of ownership influenced creative motivation and satisfaction in the study, the researchers suggest that people interested in using AI should carefully consider how to balance AI assistance in creative tasks.

Study finds AI-generated meme captions funnier than human ones on average Read More »

nvidia-announces-dgx-desktop-“personal-ai-supercomputers”

Nvidia announces DGX desktop “personal AI supercomputers”

During Tuesday’s Nvidia GTX keynote, CEO Jensen Huang unveiled two “personal AI supercomputers” called DGX Spark and DGX Station, both powered by the Grace Blackwell platform. In a way, they are a new type of AI PC architecture specifically built for running neural networks, and five major PC manufacturers will build the supercomputers.

These desktop systems, first previewed as “Project DIGITS” in January, aim to bring AI capabilities to developers, researchers, and data scientists who need to prototype, fine-tune, and run large AI models locally. DGX systems can serve as standalone desktop AI labs or “bridge systems” that allow AI developers to move their models from desktops to DGX Cloud or any AI cloud infrastructure with few code changes.

Huang explained the rationale behind these new products in a news release, saying, “AI has transformed every layer of the computing stack. It stands to reason a new class of computers would emerge—designed for AI-native developers and to run AI-native applications.”

The smaller DGX Spark features the GB10 Grace Blackwell Superchip with Blackwell GPU and fifth-generation Tensor Cores, delivering up to 1,000 trillion operations per second for AI.

Meanwhile, the more powerful DGX Station includes the GB300 Grace Blackwell Ultra Desktop Superchip with 784GB of coherent memory and the ConnectX-8 SuperNIC supporting networking speeds up to 800Gb/s.

The DGX architecture serves as a prototype that other manufacturers can produce. Asus, Dell, HP, and Lenovo will develop and sell both DGX systems, with DGX Spark reservations opening today and DGX Station expected later in 2025. Additional manufacturing partners for the DGX Station include BOXX, Lambda, and Supermicro, with systems expected to be available later this year.

Since the systems will be manufactured by different companies, Nvidia did not mention pricing for the units. However, in January, Nvidia mentioned that the base-level configuration for a DGX Spark-like computer would retail for around $3,000.

Nvidia announces DGX desktop “personal AI supercomputers” Read More »

nvidia-announces-“rubin-ultra”-and-“feynman”-ai-chips-for-2027-and-2028

Nvidia announces “Rubin Ultra” and “Feynman” AI chips for 2027 and 2028

On Tuesday at Nvidia’s GTC 2025 conference in San Jose, California, CEO Jensen Huang revealed several new AI-accelerating GPUs the company plans to release over the coming months and years. He also revealed more specifications about previously announced chips.

The centerpiece announcement was Vera Rubin, first teased at Computex 2024 and now scheduled for release in the second half of 2026. This GPU, named after a famous astronomer, will feature tens of terabytes of memory and comes with a custom Nvidia-designed CPU called Vera.

According to Nvidia, Vera Rubin will deliver significant performance improvements over its predecessor, Grace Blackwell, particularly for AI training and inference.

Specifications for Vera Rubin, presented by Jensen Huang during his GTC 2025 keynote.

Specifications for Vera Rubin, presented by Jensen Huang during his GTC 2025 keynote.

Vera Rubin features two GPUs together on one die that deliver 50 petaflops of FP4 inference performance per chip. When configured in a full NVL144 rack, the system delivers 3.6 exaflops of FP4 inference compute—3.3 times more than Blackwell Ultra’s 1.1 exaflops in a similar rack configuration.

The Vera CPU features 88 custom ARM cores with 176 threads connected to Rubin GPUs via a high-speed 1.8 TB/s NVLink interface.

Huang also announced Rubin Ultra, which will follow in the second half of 2027. Rubin Ultra will use the NVL576 rack configuration and feature individual GPUs with four reticle-sized dies, delivering 100 petaflops of FP4 precision (a 4-bit floating-point format used for representing and processing numbers within AI models) per chip.

At the rack level, Rubin Ultra will provide 15 exaflops of FP4 inference compute and 5 exaflops of FP8 training performance—about four times more powerful than the Rubin NVL144 configuration. Each Rubin Ultra GPU will include 1TB of HBM4e memory, with the complete rack containing 365TB of fast memory.

Nvidia announces “Rubin Ultra” and “Feynman” AI chips for 2027 and 2028 Read More »