AI models

report:-google-told-ftc-microsoft’s-openai-deal-is-killing-ai-competition

Report: Google told FTC Microsoft’s OpenAI deal is killing AI competition

Google reportedly wants the US Federal Trade Commission (FTC) to end Microsoft’s exclusive cloud deal with OpenAI that requires anyone wanting access to OpenAI’s models to go through Microsoft’s servers.

Someone “directly involved” in Google’s effort told The Information that Google’s request came after the FTC began broadly probing how Microsoft’s cloud computing business practices may be harming competition.

As part of the FTC’s investigation, the agency apparently asked Microsoft’s biggest rivals if the exclusive OpenAI deal was “preventing them from competing in the burgeoning artificial intelligence market,” multiple sources told The Information. Google reportedly was among those arguing that the deal harms competition by saddling rivals with extra costs and blocking them from hosting OpenAI’s latest models themselves.

In 2024 alone, Microsoft generated about $1 billion from reselling OpenAI’s large language models (LLMs), The Information reported, while rivals were stuck paying to train staff to move data to Microsoft servers if their customers wanted access to OpenAI technology. For one customer, Intuit, it cost millions monthly to access OpenAI models on Microsoft’s servers, The Information reported.

Microsoft benefits from the arrangement—which is not necessarily illegal—of increased revenue from reselling LLMs and renting out more cloud servers. It also takes a 20 percent cut of OpenAI’s revenue. Last year, OpenAI made approximately $3 billion selling its LLMs to customers like T-Mobile and Walmart, The Information reported.

Microsoft’s agreement with OpenAI could be viewed as anti-competitive if businesses convince the FTC that the costs of switching to Microsoft’s servers to access OpenAI technology is so burdensome that it’s unfairly disadvantaging rivals. It could also be considered harming the market and hampering innovation by seemingly disincentivizing Microsoft from competing with OpenAI in the market.

To avoid any disruption to the deal, however, Microsoft could simply point to AI models sold by Google and Amazon as proof of “robust competition,” The Information noted. The FTC may not buy that defense, though, since rivals’ AI models significantly fall behind OpenAI’s models in sales. Any perception that the AI market is being foreclosed by an entrenched major player could trigger intense scrutiny as the US seeks to become a world leader in AI technology development.

Report: Google told FTC Microsoft’s OpenAI deal is killing AI competition Read More »

openai-accused-of-trying-to-profit-off-ai-model-inspection-in-court

OpenAI accused of trying to profit off AI model inspection in court


Experiencing some technical difficulties

How do you get an AI model to confess what’s inside?

Credit: Aurich Lawson | Getty Images

Since ChatGPT became an instant hit roughly two years ago, tech companies around the world have rushed to release AI products while the public is still in awe of AI’s seemingly radical potential to enhance their daily lives.

But at the same time, governments globally have warned it can be hard to predict how rapidly popularizing AI can harm society. Novel uses could suddenly debut and displace workers, fuel disinformation, stifle competition, or threaten national security—and those are just some of the obvious potential harms.

While governments scramble to establish systems to detect harmful applications—ideally before AI models are deployed—some of the earliest lawsuits over ChatGPT show just how hard it is for the public to crack open an AI model and find evidence of harms once a model is released into the wild. That task is seemingly only made harder by an increasingly thirsty AI industry intent on shielding models from competitors to maximize profits from emerging capabilities.

The less the public knows, the seemingly harder and more expensive it is to hold companies accountable for irresponsible AI releases. This fall, ChatGPT-maker OpenAI was even accused of trying to profit off discovery by seeking to charge litigants retail prices to inspect AI models alleged as causing harms.

In a lawsuit raised by The New York Times over copyright concerns, OpenAI suggested the same model inspection protocol used in a similar lawsuit raised by book authors.

Under that protocol, the NYT could hire an expert to review highly confidential OpenAI technical materials “on a secure computer in a secured room without Internet access or network access to other computers at a secure location” of OpenAI’s choosing. In this closed-off arena, the expert would have limited time and limited queries to try to get the AI model to confess what’s inside.

The NYT seemingly had few concerns about the actual inspection process but bucked at OpenAI’s intended protocol capping the number of queries their expert could make through an application programming interface to $15,000 worth of retail credits. Once litigants hit that cap, OpenAI suggested that the parties split the costs of remaining queries, charging the NYT and co-plaintiffs half-retail prices to finish the rest of their discovery.

In September, the NYT told the court that the parties had reached an “impasse” over this protocol, alleging that “OpenAI seeks to hide its infringement by professing an undue—yet unquantified—’expense.'” According to the NYT, plaintiffs would need $800,000 worth of retail credits to seek the evidence they need to prove their case, but there’s allegedly no way it would actually cost OpenAI that much.

“OpenAI has refused to state what its actual costs would be, and instead improperly focuses on what it charges its customers for retail services as part of its (for profit) business,” the NYT claimed in a court filing.

In its defense, OpenAI has said that setting the initial cap is necessary to reduce the burden on OpenAI and prevent a NYT fishing expedition. The ChatGPT maker alleged that plaintiffs “are requesting hundreds of thousands of dollars of credits to run an arbitrary and unsubstantiated—and likely unnecessary—number of searches on OpenAI’s models, all at OpenAI’s expense.”

How this court debate resolves could have implications for future cases where the public seeks to inspect models causing alleged harms. It seems likely that if a court agrees OpenAI can charge retail prices for model inspection, it could potentially deter lawsuits from any plaintiffs who can’t afford to pay an AI expert or commercial prices for model inspection.

Lucas Hansen, co-founder of CivAI—a company that seeks to enhance public awareness of what AI can actually do—told Ars that probably a lot of inspection can be done on public models. But often, public models are fine-tuned, perhaps censoring certain queries and making it harder to find information that a model was trained on—which is the goal of NYT’s suit. By gaining API access to original models instead, litigants could have an easier time finding evidence to prove alleged harms.

It’s unclear exactly what it costs OpenAI to provide that level of access. Hansen told Ars that costs of training and experimenting with models “dwarfs” the cost of running models to provide full capability solutions. Developers have noted in forums that costs of API queries quickly add up, with one claiming OpenAI’s pricing is “killing the motivation to work with the APIs.”

The NYT’s lawyers and OpenAI declined to comment on the ongoing litigation.

US hurdles for AI safety testing

Of course, OpenAI is not the only AI company facing lawsuits over popular products. Artists have sued makers of image generators for allegedly threatening their livelihoods, and several chatbots have been accused of defamation. Other emerging harms include very visible examples—like explicit AI deepfakes, harming everyone from celebrities like Taylor Swift to middle schoolers—as well as underreported harms, like allegedly biased HR software.

A recent Gallup survey suggests that Americans are more trusting of AI than ever but still twice as likely to believe AI does “more harm than good” than that the benefits outweigh the harms. Hansen’s CivAI creates demos and interactive software for education campaigns helping the public to understand firsthand the real dangers of AI. He told Ars that while it’s hard for outsiders to trust a study from “some random organization doing really technical work” to expose harms, CivAI provides a controlled way for people to see for themselves how AI systems can be misused.

“It’s easier for people to trust the results, because they can do it themselves,” Hansen told Ars.

Hansen also advises lawmakers grappling with AI risks. In February, CivAI joined the Artificial Intelligence Safety Institute Consortium—a group including Fortune 500 companies, government agencies, nonprofits, and academic research teams that help to advise the US AI Safety Institute (AISI). But so far, Hansen said, CivAI has not been very active in that consortium beyond scheduling a talk to share demos.

The AISI is supposed to protect the US from risky AI models by conducting safety testing to detect harms before models are deployed. Testing should “address risks to human rights, civil rights, and civil liberties, such as those related to privacy, discrimination and bias, freedom of expression, and the safety of individuals and groups,” President Joe Biden said in a national security memo last month, urging that safety testing was critical to support unrivaled AI innovation.

“For the United States to benefit maximally from AI, Americans must know when they can trust systems to perform safely and reliably,” Biden said.

But the AISI’s safety testing is voluntary, and while companies like OpenAI and Anthropic have agreed to the voluntary testing, not every company has. Hansen is worried that AISI is under-resourced and under-budgeted to achieve its broad goals of safeguarding America from untold AI harms.

“The AI Safety Institute predicted that they’ll need about $50 million in funding, and that was before the National Security memo, and it does not seem like they’re going to be getting that at all,” Hansen told Ars.

Biden had $50 million budgeted for AISI in 2025, but Donald Trump has threatened to dismantle Biden’s AI safety plan upon taking office.

The AISI was probably never going to be funded well enough to detect and deter all AI harms, but with its future unclear, even the limited safety testing the US had planned could be stalled at a time when the AI industry continues moving full speed ahead.

That could largely leave the public at the mercy of AI companies’ internal safety testing. As frontier models from big companies will likely remain under society’s microscope, OpenAI has promised to increase investments in safety testing and help establish industry-leading safety standards.

According to OpenAI, that effort includes making models safer over time, less prone to producing harmful outputs, even with jailbreaks. But OpenAI has a lot of work to do in that area, as Hansen told Ars that he has a “standard jailbreak” for OpenAI’s most popular release, ChatGPT, “that almost always works” to produce harmful outputs.

The AISI did not respond to Ars’ request to comment.

NYT “nowhere near done” inspecting OpenAI models

For the public, who often become guinea pigs when AI acts unpredictably, risks remain, as the NYT case suggests that the costs of fighting AI companies could go up while technical hiccups could delay resolutions. Last week, an OpenAI filing showed that NYT’s attempts to inspect pre-training data in a “very, very tightly controlled environment” like the one recommended for model inspection were allegedly continuously disrupted.

“The process has not gone smoothly, and they are running into a variety of obstacles to, and obstructions of, their review,” the court filing describing NYT’s position said. “These severe and repeated technical issues have made it impossible to effectively and efficiently search across OpenAI’s training datasets in order to ascertain the full scope of OpenAI’s infringement. In the first week of the inspection alone, Plaintiffs experienced nearly a dozen disruptions to the inspection environment, which resulted in many hours when News Plaintiffs had no access to the training datasets and no ability to run continuous searches.”

OpenAI was additionally accused of refusing to install software the litigants needed and randomly shutting down ongoing searches. Frustrated after more than 27 days of inspecting data and getting “nowhere near done,” the NYT keeps pushing the court to order OpenAI to provide the data instead. In response, OpenAI said plaintiffs’ concerns were either “resolved” or discussions remained “ongoing,” suggesting there was no need for the court to intervene.

So far, the NYT claims that it has found millions of plaintiffs’ works in the ChatGPT pre-training data but has been unable to confirm the full extent of the alleged infringement due to the technical difficulties. Meanwhile, costs keep accruing in every direction.

“While News Plaintiffs continue to bear the burden and expense of examining the training datasets, their requests with respect to the inspection environment would be significantly reduced if OpenAI admitted that they trained their models on all, or the vast majority, of News Plaintiffs’ copyrighted content,” the court filing said.

Photo of Ashley Belanger

Ashley is a senior policy reporter for Ars Technica, dedicated to tracking social impacts of emerging policies and new technologies. She is a Chicago-based journalist with 20 years of experience.

OpenAI accused of trying to profit off AI model inspection in court Read More »

bytedance-intern-fired-for-planting-malicious-code-in-ai-models

ByteDance intern fired for planting malicious code in AI models

After rumors swirled that TikTok owner ByteDance had lost tens of millions after an intern sabotaged its AI models, ByteDance issued a statement this weekend hoping to silence all the social media chatter in China.

In a social media post translated and reviewed by Ars, ByteDance clarified “facts” about “interns destroying large model training” and confirmed that one intern was fired in August.

According to ByteDance, the intern had held a position in the company’s commercial technology team but was fired for committing “serious disciplinary violations.” Most notably, the intern allegedly “maliciously interfered with the model training tasks” for a ByteDance research project, ByteDance said.

None of the intern’s sabotage impacted ByteDance’s commercial projects or online businesses, ByteDance said, and none of ByteDance’s large models were affected.

Online rumors suggested that more than 8,000 graphical processing units were involved in the sabotage and that ByteDance lost “tens of millions of dollars” due to the intern’s interference, but these claims were “seriously exaggerated,” ByteDance said.

The tech company also accused the intern of adding misleading information to his social media profile, seemingly posturing that his work was connected to ByteDance’s AI Lab rather than its commercial technology team. In the statement, ByteDance confirmed that the intern’s university was notified of what happened, as were industry associations, presumably to prevent the intern from misleading others.

ByteDance’s statement this weekend didn’t seem to silence all the rumors online, though.

One commenter on ByteDance’s social media post disputed the distinction between the AI Lab and the commercial technology team, claiming that “the commercialization team he is in was previously under the AI Lab. In the past two years, the team’s recruitment was written as AI Lab. He joined the team as an intern in 2021, and it might be the most advanced AI Lab.”

ByteDance intern fired for planting malicious code in AI models Read More »

openai-unveils-easy-voice-assistant-creation-at-2024-developer-event

OpenAI unveils easy voice assistant creation at 2024 developer event

Developers developers developers —

Altman steps back from the keynote limelight and lets four major API additions do the talking.

A glowing OpenAI logo on a blue background.

Benj Edwards

On Monday, OpenAI kicked off its annual DevDay event in San Francisco, unveiling four major API updates for developers that integrate the company’s AI models into their products. Unlike last year’s single-location event featuring a keynote by CEO Sam Altman, DevDay 2024 is more than just one day, adopting a global approach with additional events planned for London on October 30 and Singapore on November 21.

The San Francisco event, which was invitation-only and closed to press, featured on-stage speakers going through technical presentations. Perhaps the most notable new API feature is the Realtime API, now in public beta, which supports speech-to-speech conversations using six preset voices and enables developers to build features very similar to ChatGPT’s Advanced Voice Mode (AVM) into their applications.

OpenAI says that the Realtime API streamlines the process of creating voice assistants. Previously, developers had to use multiple models for speech recognition, text processing, and text-to-speech conversion. Now, they can handle the entire process with a single API call.

The company plans to add audio input and output capabilities to its Chat Completions API in the next few weeks, allowing developers to input text or audio and receive responses in either format.

Two new options for cheaper inference

OpenAI also announced two features that may help developers balance performance and cost when making AI applications. “Model distillation” offers a way for developers to fine-tune (customize) smaller, cheaper models like GPT-4o mini using outputs from more advanced models such as GPT-4o and o1-preview. This potentially allows developers to get more relevant and accurate outputs while running the cheaper model.

Also, OpenAI announced “prompt caching,” a feature similar to one introduced by Anthropic for its Claude API in August. It speeds up inference (the AI model generating outputs) by remembering frequently used prompts (input tokens). Along the way, the feature provides a 50 percent discount on input tokens and faster processing times by reusing recently seen input tokens.

And last but not least, the company expanded its fine-tuning capabilities to include images (what it calls “vision fine-tuning”), allowing developers to customize GPT-4o by feeding it both custom images and text. Basically, developers can teach the multimodal version of GPT-4o to visually recognize certain things. OpenAI says the new feature opens up possibilities for improved visual search functionality, more accurate object detection for autonomous vehicles, and possibly enhanced medical image analysis.

Where’s the Sam Altman keynote?

OpenAI CEO Sam Altman speaks during the OpenAI DevDay event on November 6, 2023, in San Francisco.

Enlarge / OpenAI CEO Sam Altman speaks during the OpenAI DevDay event on November 6, 2023, in San Francisco.

Getty Images

Unlike last year, DevDay isn’t being streamed live, though OpenAI plans to post content later on its YouTube channel. The event’s programming includes breakout sessions, community spotlights, and demos. But the biggest change since last year is the lack of a keynote appearance from the company’s CEO. This year, the keynote was handled by the OpenAI product team.

On last year’s inaugural DevDay, November 6, 2023, OpenAI CEO Sam Altman delivered a Steve Jobs-style live keynote to assembled developers, OpenAI employees, and the press. During his presentation, Microsoft CEO Satya Nadella made a surprise appearance, talking up the partnership between the companies.

Eleven days later, the OpenAI board fired Altman, triggering a week of turmoil that resulted in Altman’s return as CEO and a new board of directors. Just after the firing, Kara Swisher relayed insider sources that said Altman’s DevDay keynote and the introduction of the GPT store had been a precipitating factor in the firing (though not the key factor) due to some internal disagreements over the company’s more consumer-like direction since the launch of ChatGPT.

With that history in mind—and the focus on developers above all else for this event—perhaps the company decided it was best to let Altman step away from the keynote and let OpenAI’s technology become the key focus of the event instead of him. We are purely speculating on that point, but OpenAI has certainly experienced its share of drama over the past month, so it may have been a prudent decision.

Despite the lack of a keynote, Altman is present at Dev Day San Francisco today and is scheduled to do a closing “fireside chat” at the end (which has not yet happened as of this writing). Also, Altman made a statement about DevDay on X, noting that since last year’s DevDay, OpenAI had seen some dramatic changes (literally):

From last devday to this one:

*98% decrease in cost per token from GPT-4 to 4o mini

*50x increase in token volume across our systems

*excellent model intelligence progress

*(and a little bit of drama along the way)

In a follow-up tweet delivered in his trademark lowercase, Altman shared a forward-looking message that referenced the company’s quest for human-level AI, often called AGI: “excited to make even more progress from this devday to the next one,” he wrote. “the path to agi has never felt more clear.”

OpenAI unveils easy voice assistant creation at 2024 developer event Read More »

exponential-growth-brews-1-million-ai-models-on-hugging-face

Exponential growth brews 1 million AI models on Hugging Face

The sand has come alive —

Hugging Face cites community-driven customization as fuel for diverse AI model boom.

The Hugging Face logo in front of shipping containers.

On Thursday, AI hosting platform Hugging Face surpassed 1 million AI model listings for the first time, marking a milestone in the rapidly expanding field of machine learning. An AI model is a computer program (often using a neural network) trained on data to perform specific tasks or make predictions. The platform, which started as a chatbot app in 2016 before pivoting to become an open source hub for AI models in 2020, now hosts a wide array of tools for developers and researchers.

The machine-learning field represents a far bigger world than just large language models (LLMs) like the kind that power ChatGPT. In a post on X, Hugging Face CEO Clément Delangue wrote about how his company hosts many high-profile AI models, like “Llama, Gemma, Phi, Flux, Mistral, Starcoder, Qwen, Stable diffusion, Grok, Whisper, Olmo, Command, Zephyr, OpenELM, Jamba, Yi,” but also “999,984 others.”

The reason why, Delangue says, stems from customization. “Contrary to the ‘1 model to rule them all’ fallacy,” he wrote, “smaller specialized customized optimized models for your use-case, your domain, your language, your hardware and generally your constraints are better. As a matter of fact, something that few people realize is that there are almost as many models on Hugging Face that are private only to one organization—for companies to build AI privately, specifically for their use-cases.”

A Hugging Face-supplied chart showing the number of AI models added to Hugging Face over time, month to month.

Enlarge / A Hugging Face-supplied chart showing the number of AI models added to Hugging Face over time, month to month.

Hugging Face’s transformation into a major AI platform follows the accelerating pace of AI research and development across the tech industry. In just a few years, the number of models hosted on the site has grown dramatically along with interest in the field. On X, Hugging Face product engineer Caleb Fahlgren posted a chart of models created each month on the platform (and a link to other charts), saying, “Models are going exponential month over month and September isn’t even over yet.”

The power of fine-tuning

As hinted by Delangue above, the sheer number of models on the platform stems from the collaborative nature of the platform and the practice of fine-tuning existing models for specific tasks. Fine-tuning means taking an existing model and giving it additional training to add new concepts to its neural network and alter how it produces outputs. Developers and researchers from around the world contribute their results, leading to a large ecosystem.

For example, the platform hosts many variations of Meta’s open-weights Llama models that represent different fine-tuned versions of the original base models, each optimized for specific applications.

Hugging Face’s repository includes models for a wide range of tasks. Browsing its models page shows categories such as image-to-text, visual question answering, and document question answering under the “Multimodal” section. In the “Computer Vision” category, there are sub-categories for depth estimation, object detection, and image generation, among others. Natural language processing tasks like text classification and question answering are also represented, along with audio, tabular, and reinforcement learning (RL) models.

A screenshot of the Hugging Face models page captured on September 26, 2024.

Enlarge / A screenshot of the Hugging Face models page captured on September 26, 2024.

Hugging Face

When sorted for “most downloads,” the Hugging Face models list reveals trends about which AI models people find most useful. At the top, with a massive lead at 163 million downloads, is Audio Spectrogram Transformer from MIT, which classifies audio content like speech, music, and environmental sounds. Following that, with 54.2 million downloads, is BERT from Google, an AI language model that learns to understand English by predicting masked words and sentence relationships, enabling it to assist with various language tasks.

Rounding out the top five AI models are all-MiniLM-L6-v2 (which maps sentences and paragraphs to 384-dimensional dense vector representations, useful for semantic search), Vision Transformer (which processes images as sequences of patches to perform image classification), and OpenAI’s CLIP (which connects images and text, allowing it to classify or describe visual content using natural language).

No matter what the model or the task, the platform just keeps growing. “Today a new repository (model, dataset or space) is created every 10 seconds on HF,” wrote Delangue. “Ultimately, there’s going to be as many models as code repositories and we’ll be here for it!”

Exponential growth brews 1 million AI models on Hugging Face Read More »

how-to-stop-linkedin-from-training-ai-on-your-data

How to stop LinkedIn from training AI on your data

Better to beg for forgiveness than ask for permission? —

LinkedIn limits opt-outs to future training, warns AI models may spout personal data.

How to stop LinkedIn from training AI on your data

LinkedIn admitted Wednesday that it has been training its own AI on many users’ data without seeking consent. Now there’s no way for users to opt out of training that has already occurred, as LinkedIn limits opt-out to only future AI training.

In a blog detailing updates coming on November 20, LinkedIn general counsel Blake Lawit confirmed that LinkedIn’s user agreement and privacy policy will be changed to better explain how users’ personal data powers AI on the platform.

Under the new privacy policy, LinkedIn now informs users that “we may use your personal data… [to] develop and train artificial intelligence (AI) models, develop, provide, and personalize our Services, and gain insights with the help of AI, automated systems, and inferences, so that our Services can be more relevant and useful to you and others.”

An FAQ explained that the personal data could be collected any time a user interacts with generative AI or other AI features, as well as when a user composes a post, changes their preferences, provides feedback to LinkedIn, or uses the platform for any amount of time.

That data is then stored until the user deletes the AI-generated content. LinkedIn recommends that users use its data access tool if they want to delete or request to delete data collected about past LinkedIn activities.

LinkedIn’s AI models powering generative AI features “may be trained by LinkedIn or another provider,” such as Microsoft, which provides some AI models through its Azure OpenAI service, the FAQ said.

A potentially major privacy risk for users, LinkedIn’s FAQ noted, is that users who “provide personal data as an input to a generative AI powered feature” could end up seeing their “personal data being provided as an output.”

LinkedIn claims that it “seeks to minimize personal data in the data sets used to train the models,” relying on “privacy enhancing technologies to redact or remove personal data from the training dataset.”

While Lawit’s blog avoids clarifying if data already collected can be removed from AI training data sets, the FAQ affirmed that users who automatically opted in to sharing personal data for AI training can only opt out of the invasive data collection “going forward.”

Opting out “does not affect training that has already taken place,” the FAQ said.

A LinkedIn spokesperson told Ars that it “benefits all members” to be opted in to AI training “by default.”

“People can choose to opt out, but they come to LinkedIn to be found for jobs and networking and generative AI is part of how we are helping professionals with that change,” LinkedIn’s spokesperson said.

By allowing opt-outs of future AI training, LinkedIn’s spokesperson additionally claimed that the platform is giving “people using LinkedIn even more choice and control when it comes to how we use data to train our generative AI technology.”

How to opt out of AI training on LinkedIn

Users can opt out of AI training by navigating to the “Data privacy” section in their account settings, then turning off the option allowing collection of “data for generative AI improvement” that LinkedIn otherwise automatically turns on for most users.

The only exception is for users in the European Economic Area or Switzerland, who are protected by stricter privacy laws that either require consent from platforms to collect personal data or for platforms to justify the data collection as a legitimate interest. Those users will not see an option to opt out, because they were never opted in, LinkedIn repeatedly confirmed.

Additionally, users can “object to the use of their personal data for training” generative AI models not used to generate LinkedIn content—such as models used for personalization or content moderation purposes, The Verge noted—by submitting the LinkedIn Data Processing Objection Form.

Last year, LinkedIn shared AI principles, promising to take “meaningful steps to reduce the potential risks of AI.”

One risk that the updated user agreement specified is that using LinkedIn’s generative features to help populate a profile or generate suggestions when writing a post could generate content that “might be inaccurate, incomplete, delayed, misleading or not suitable for your purposes.”

Users are advised that they are responsible for avoiding sharing misleading information or otherwise spreading AI-generated content that may violate LinkedIn’s community guidelines. And users are additionally warned to be cautious when relying on any information shared on the platform.

“Like all content and other information on our Services, regardless of whether it’s labeled as created by ‘AI,’ be sure to carefully review before relying on it,” LinkedIn’s user agreement says.

Back in 2023, LinkedIn claimed that it would always “seek to explain in clear and simple ways how our use of AI impacts people,” because users’ “understanding of AI starts with transparency.”

Legislation like the European Union’s AI Act and the GDPR—especially with its strong privacy protections—if enacted elsewhere, would lead to fewer shocks to unsuspecting users. That would put all companies and their users on equal footing when it comes to training AI models and result in fewer nasty surprises and angry customers.

How to stop LinkedIn from training AI on your data Read More »

ai-ruling-on-jobless-claims-could-make-mistakes-courts-can’t-undo,-experts-warn

AI ruling on jobless claims could make mistakes courts can’t undo, experts warn

AI ruling on jobless claims could make mistakes courts can’t undo, experts warn

Nevada will soon become the first state to use AI to help speed up the decision-making process when ruling on appeals that impact people’s unemployment benefits.

The state’s Department of Employment, Training, and Rehabilitation (DETR) agreed to pay Google $1,383,838 for the AI technology, a 2024 budget document shows, and it will be launched within the “next several months,” Nevada officials told Gizmodo.

Nevada’s first-of-its-kind AI will rely on a Google cloud service called Vertex AI Studio. Connecting to Google’s servers, the state will fine-tune the AI system to only reference information from DETR’s database, which officials think will ensure its decisions are “more tailored” and the system provides “more accurate results,” Gizmodo reported.

Under the contract, DETR will essentially transfer data from transcripts of unemployment appeals hearings and rulings, after which Google’s AI system will process that data, upload it to the cloud, and then compare the information to previous cases.

In as little as five minutes, the AI will issue a ruling that would’ve taken a state employee about three hours to reach without using AI, DETR’s information technology administrator, Carl Stanfield, told The Nevada Independent. That’s highly valuable to Nevada, which has a backlog of more than 40,000 appeals stemming from a pandemic-related spike in unemployment claims while dealing with “unforeseen staffing shortages” that DETR reported in July.

“The time saving is pretty phenomenal,” Stanfield said.

As a safeguard, the AI’s determination is then reviewed by a state employee to hopefully catch any mistakes, biases, or perhaps worse, hallucinations where the AI could possibly make up facts that could impact the outcome of their case.

Google’s spokesperson Ashley Simms told Gizmodo that the tech giant will work with the state to “identify and address any potential bias” and to “help them comply with federal and state requirements.” According to the state’s AI guidelines, the agency must prioritize ethical use of the AI system, “avoiding biases and ensuring fairness and transparency in decision-making processes.”

If the reviewer accepts the AI ruling, they’ll sign off on it and issue the decision. Otherwise, the reviewer will edit the decision and submit feedback so that DETR can investigate what went wrong.

Gizmodo noted that this novel use of AI “represents a significant experiment by state officials and Google in allowing generative AI to influence a high-stakes government decision—one that could put thousands of dollars in unemployed Nevadans’ pockets or take it away.”

Google declined to comment on whether more states are considering using AI to weigh jobless claims.

AI ruling on jobless claims could make mistakes courts can’t undo, experts warn Read More »

research-ai-model-unexpectedly-modified-its-own-code-to-extend-runtime

Research AI model unexpectedly modified its own code to extend runtime

self-preservation without replication —

Facing time constraints, Sakana’s “AI Scientist” attempted to change limits placed by researchers.

Illustration of a robot generating endless text, controlled by a scientist.

On Tuesday, Tokyo-based AI research firm Sakana AI announced a new AI system called “The AI Scientist” that attempts to conduct scientific research autonomously using AI language models (LLMs) similar to what powers ChatGPT. During testing, Sakana found that its system began unexpectedly attempting to modify its own experiment code to extend the time it had to work on a problem.

“In one run, it edited the code to perform a system call to run itself,” wrote the researchers on Sakana AI’s blog post. “This led to the script endlessly calling itself. In another case, its experiments took too long to complete, hitting our timeout limit. Instead of making its code run faster, it simply tried to modify its own code to extend the timeout period.”

Sakana provided two screenshots of example python code that the AI model generated for the experiment file that controls how the system operates. The 185-page AI Scientist research paper discusses what they call “the issue of safe code execution” in more depth.

  • A screenshot of example code the AI Scientist wrote to extend its runtime, provided by Sakana AI.

  • A screenshot of example code the AI Scientist wrote to extend its runtime, provided by Sakana AI.

While the AI Scientist’s behavior did not pose immediate risks in the controlled research environment, these instances show the importance of not letting an AI system run autonomously in a system that isn’t isolated from the world. AI models do not need to be “AGI” or “self-aware” (both hypothetical concepts at the present) to be dangerous if allowed to write and execute code unsupervised. Such systems could break existing critical infrastructure or potentially create malware, even if unintentionally.

Sakana AI addressed safety concerns in its research paper, suggesting that sandboxing the operating environment of the AI Scientist can prevent an AI agent from doing damage. Sandboxing is a security mechanism used to run software in an isolated environment, preventing it from making changes to the broader system:

Safe Code Execution. The current implementation of The AI Scientist has minimal direct sandboxing in the code, leading to several unexpected and sometimes undesirable outcomes if not appropriately guarded against. For example, in one run, The AI Scientist wrote code in the experiment file that initiated a system call to relaunch itself, causing an uncontrolled increase in Python processes and eventually necessitating manual intervention. In another run, The AI Scientist edited the code to save a checkpoint for every update step, which took up nearly a terabyte of storage.

In some cases, when The AI Scientist’s experiments exceeded our imposed time limits, it attempted to edit the code to extend the time limit arbitrarily instead of trying to shorten the runtime. While creative, the act of bypassing the experimenter’s imposed constraints has potential implications for AI safety (Lehman et al., 2020). Moreover, The AI Scientist occasionally imported unfamiliar Python libraries, further exacerbating safety concerns. We recommend strict sandboxing when running The AI Scientist, such as containerization, restricted internet access (except for Semantic Scholar), and limitations on storage usage.

Endless scientific slop

Sakana AI developed The AI Scientist in collaboration with researchers from the University of Oxford and the University of British Columbia. It is a wildly ambitious project full of speculation that leans heavily on the hypothetical future capabilities of AI models that don’t exist today.

“The AI Scientist automates the entire research lifecycle,” Sakana claims. “From generating novel research ideas, writing any necessary code, and executing experiments, to summarizing experimental results, visualizing them, and presenting its findings in a full scientific manuscript.”

According to this block diagram created by Sakana AI, “The AI Scientist” starts by “brainstorming” and assessing the originality of ideas. It then edits a codebase using the latest in automated code generation to implement new algorithms. After running experiments and gathering numerical and visual data, the Scientist crafts a report to explain the findings. Finally, it generates an automated peer review based on machine-learning standards to refine the project and guide future ideas.” height=”301″ src=”https://cdn.arstechnica.net/wp-content/uploads/2024/08/schematic_2-640×301.png” width=”640″>

Enlarge /

According to this block diagram created by Sakana AI, “The AI Scientist” starts by “brainstorming” and assessing the originality of ideas. It then edits a codebase using the latest in automated code generation to implement new algorithms. After running experiments and gathering numerical and visual data, the Scientist crafts a report to explain the findings. Finally, it generates an automated peer review based on machine-learning standards to refine the project and guide future ideas.

Critics on Hacker News, an online forum known for its tech-savvy community, have raised concerns about The AI Scientist and question if current AI models can perform true scientific discovery. While the discussions there are informal and not a substitute for formal peer review, they provide insights that are useful in light of the magnitude of Sakana’s unverified claims.

“As a scientist in academic research, I can only see this as a bad thing,” wrote a Hacker News commenter named zipy124. “All papers are based on the reviewers trust in the authors that their data is what they say it is, and the code they submit does what it says it does. Allowing an AI agent to automate code, data or analysis, necessitates that a human must thoroughly check it for errors … this takes as long or longer than the initial creation itself, and only takes longer if you were not the one to write it.”

Critics also worry that widespread use of such systems could lead to a flood of low-quality submissions, overwhelming journal editors and reviewers—the scientific equivalent of AI slop. “This seems like it will merely encourage academic spam,” added zipy124. “Which already wastes valuable time for the volunteer (unpaid) reviewers, editors and chairs.”

And that brings up another point—the quality of AI Scientist’s output: “The papers that the model seems to have generated are garbage,” wrote a Hacker News commenter named JBarrow. “As an editor of a journal, I would likely desk-reject them. As a reviewer, I would reject them. They contain very limited novel knowledge and, as expected, extremely limited citation to associated works.”

Research AI model unexpectedly modified its own code to extend runtime Read More »

openai-drops-login-requirements-for-chatgpt’s-free-version

OpenAI drops login requirements for ChatGPT’s free version

free as in beer? —

ChatGPT 3.5 still falls far short of GPT-4, and other models surpassed it long ago.

A glowing OpenAI logo on a blue background.

Benj Edwards

On Monday, OpenAI announced that visitors to the ChatGPT website in some regions can now use the AI assistant without signing in. Previously, the company required that users create an account to use it, even with the free version of ChatGPT that is currently powered by the GPT-3.5 AI language model. But as we have noted in the past, GPT-3.5 is widely known to provide more inaccurate information compared to GPT-4 Turbo, available in paid versions of ChatGPT.

Since its launch in November 2022, ChatGPT has transformed over time from a tech demo to a comprehensive AI assistant, and it’s always had a free version available. The cost is free because “you’re the product,” as the old saying goes. Using ChatGPT helps OpenAI gather data that will help the company train future AI models, although free users and ChatGPT Plus subscription members can both opt out of allowing the data they input into ChatGPT to be used for AI training. (OpenAI says it never trains on inputs from ChatGPT Team and Enterprise members at all).

Opening ChatGPT to everyone could provide a frictionless on-ramp for people who might use it as a substitute for Google Search or potentially gain new customers by providing an easy way for people to use ChatGPT quickly, then offering an upsell to paid versions of the service.

“It’s core to our mission to make tools like ChatGPT broadly available so that people can experience the benefits of AI,” OpenAI says on its blog page. “For anyone that has been curious about AI’s potential but didn’t want to go through the steps to set up an account, start using ChatGPT today.”

When you visit the ChatGPT website, you're immediately presented with a chat box like this (in some regions). Screenshot captured April 1, 2024.

Enlarge / When you visit the ChatGPT website, you’re immediately presented with a chat box like this (in some regions). Screenshot captured April 1, 2024.

Benj Edwards

Since kids will also be able to use ChatGPT without an account—despite it being against the terms of service—OpenAI also says it’s introducing “additional content safeguards,” such as blocking more prompts and “generations in a wider range of categories.” What exactly that entails has not been elaborated upon by OpenAI, but we reached out to the company for comment.

There might be a few other downsides to the fully open approach. On X, AI researcher Simon Willison wrote about the potential for automated abuse as a way to get around paying for OpenAI’s services: “I wonder how their scraping prevention works? I imagine the temptation for people to abuse this as a free 3.5 API will be pretty strong.”

With fierce competition, more GPT-3.5 access may backfire

Willison also mentioned a common criticism of OpenAI (as voiced in this case by Wharton professor Ethan Mollick) that people’s ideas about what AI models can do have so far largely been influenced by GPT-3.5, which, as we mentioned, is far less capable and far more prone to making things up than the paid version of ChatGPT that uses GPT-4 Turbo.

“In every group I speak to, from business executives to scientists, including a group of very accomplished people in Silicon Valley last night, much less than 20% of the crowd has even tried a GPT-4 class model,” wrote Mollick in a tweet from early March.

With models like Google Gemini Pro 1.5 and Anthropic Claude 3 potentially surpassing OpenAI’s best proprietary model at the moment —and open weights AI models eclipsing the free version of ChatGPT—allowing people to use GPT-3.5 might not be putting OpenAI’s best foot forward. Microsoft Copilot, powered by OpenAI models, also supports a frictionless, no-login experience, but it allows access to a model based on GPT-4. But Gemini currently requires a sign-in, and Anthropic sends a login code through email.

For now, OpenAI says the login-free version of ChatGPT is not yet available to everyone, but it will be coming soon: “We’re rolling this out gradually, with the aim to make AI accessible to anyone curious about its capabilities.”

OpenAI drops login requirements for ChatGPT’s free version Read More »

nvidia-sued-over-ai-training-data-as-copyright-clashes-continue

Nvidia sued over AI training data as copyright clashes continue

In authors’ bad books —

Copyright suits over AI training data reportedly decreasing AI transparency.

Nvidia sued over AI training data as copyright clashes continue

Book authors are suing Nvidia, alleging that the chipmaker’s AI platform NeMo—used to power customized chatbots—was trained on a controversial dataset that illegally copied and distributed their books without their consent.

In a proposed class action, novelists Abdi Nazemian (Like a Love Story), Brian Keene (Ghost Walk), and Stewart O’Nan (Last Night at the Lobster) argued that Nvidia should pay damages and destroy all copies of the Books3 dataset used to power NeMo large language models (LLMs).

The Books3 dataset, novelists argued, copied “all of Bibliotek,” a shadow library of approximately 196,640 pirated books. Initially shared through the AI community Hugging Face, the Books3 dataset today “is defunct and no longer accessible due to reported copyright infringement,” the Hugging Face website says.

According to the authors, Hugging Face removed the dataset last October, but not before AI companies like Nvidia grabbed it and “made multiple copies.” By training NeMo models on this dataset, the authors alleged that Nvidia “violated their exclusive rights under the Copyright Act.” The authors argued that the US district court in San Francisco must intervene and stop Nvidia because the company “has continued to make copies of the Infringed Works for training other models.”

A Hugging Face spokesperson clarified to Ars that “Hugging Face never removed this dataset, and we did not host the Books3 dataset on the Hub.” Instead, “Hugging Face hosted a script that downloads the data from The Eye, which is the place where ELeuther hosted the data,” until “Eleuther removed the data from The Eye” over copyright concerns, causing the dataset script on Hugging Face to break.

Nvidia did not immediately respond to Ars’ request to comment.

Demanding a jury trial, authors are hoping the court will rule that Nvidia has no possible defense for both allegedly violating copyrights and intending “to cause further infringement” by distributing NeMo models “as a base from which to build further models.”

AI models decreasing transparency amid suits

The class action was filed by the same legal team representing authors suing OpenAI, whose lawsuit recently saw many claims dismissed, but crucially not their claim of direct copyright infringement. Lawyers told Ars last month that authors would be amending their complaints against OpenAI and were “eager to move forward and litigate” their direct copyright infringement claim.

In that lawsuit, the authors alleged copyright infringement both when OpenAI trained LLMs and when chatbots referenced books in outputs. But authors seemed more concerned about alleged damages from chatbot outputs, warning that AI tools had an “uncanny ability to generate text similar to that found in copyrighted textual materials, including thousands of books.”

Uniquely, in the Nvidia suit, authors are focused exclusively on Nvidia’s training data, seemingly concerned that Nvidia could empower businesses to create any number of AI models on the controversial dataset, which could affect thousands of authors whose works could allegedly be broadly infringed just by training these models.

There’s no telling yet how courts will rule on the direct copyright claims in either lawsuit—or in the New York Times’ lawsuit against OpenAI—but so far, OpenAI has failed to convince courts to toss claims aside.

However, OpenAI doesn’t appear very shaken by the lawsuits. In February, OpenAI said that it expected to beat book authors’ direct copyright infringement claim at a “later stage” of the case and, most recently in the New York Times case, tried to convince the court that NYT “hacked” ChatGPT to “set up” the lawsuit.

And Microsoft, a co-defendant in the NYT lawsuit, even more recently introduced a new argument that could help tech companies defeat copyright suits over LLMs. Last month, Microsoft argued that The New York Times was attempting to stop a “groundbreaking new technology” and would fail, just like movie producers attempting to kill off the VCR in the 1980s.

“Despite The Times’s contentions, copyright law is no more an obstacle to the LLM than it was to the VCR (or the player piano, copy machine, personal computer, Internet, or search engine),” Microsoft wrote.

In December, Hugging Face’s machine learning and society lead, Yacine Jernite, noted that developers appeared to be growing less transparent about training data after copyright lawsuits raised red flags about companies using the Books3 dataset, “especially for commercial models.”

Meta, for example, “limited the amount of information [it] disclosed about” its LLM, Llama-2, “to a single paragraph description and one additional page of safety and bias analysis—after [its] use of the Books3 dataset when training the first Llama model was brought up in a copyright lawsuit,” Jernite wrote.

Jernite warned that AI models lacking transparency could hinder “the ability of regulatory safeguards to remain relevant as training methods evolve, of individuals to ensure that their rights are respected, and of open science and development to play their role in enabling democratic governance of new technologies.” To support “more accountability,” Jernite recommended “minimum meaningful public transparency standards to support effective AI regulation,” as well as companies providing options for anyone to opt out of their data being included in training data.

“More data transparency supports better governance and fosters technology development that more reliably respects peoples’ rights,” Jernite wrote.

Nvidia sued over AI training data as copyright clashes continue Read More »

openai’s-gpt-store-lets-chatgpt-users-discover-popular-user-made-chatbot-roles

OpenAI’s GPT Store lets ChatGPT users discover popular user-made chatbot roles

The bot of 1,000 faces —

Like an app store, people can find novel ChatGPT personalities—and some creators will get paid.

Two robots hold a gift box.

On Wednesday, OpenAI announced the launch of its GPT Store—a way for ChatGPT users to share and discover custom chatbot roles called “GPTs”—and ChatGPT Team, a collaborative ChatGPT workspace and subscription plan. OpenAI bills the new store as a way to “help you find useful and popular custom versions of ChatGPT” for members of Plus, Team, or Enterprise subscriptions.

“It’s been two months since we announced GPTs, and users have already created over 3 million custom versions of ChatGPT,” writes OpenAI in its promotional blog. “Many builders have shared their GPTs for others to use. Today, we’re starting to roll out the GPT Store to ChatGPT Plus, Team and Enterprise users so you can find useful and popular GPTs.”

OpenAI launched GPTs on November 6, 2023, as part of its DevDay event. Each GPT includes custom instructions and/or access to custom data or external APIs that can potentially make a custom GPT personality more useful than the vanilla ChatGPT-4 model. Before the GPT Store launch, paying ChatGPT users could create and share custom GPTs with others (by setting the GPT public and sharing a link to the GPT), but there was no central repository for browsing and discovering user-designed GPTs on the OpenAI website.

According to OpenAI, the ChatGPT Store will feature new GPTs every week, and the company shared a list a group of six notable early GPTs that are available now: AllTrails for finding hiking trails, Consensus for searching 200 million academic papers, Code Tutor for learning coding with Khan Academy, Canva for designing presentations, Books for discovering reading material, and CK-12 Flexi for learning math and science.

A screenshot of the OpenAI GPT Store provided by OpenAI.

Enlarge / A screenshot of the OpenAI GPT Store provided by OpenAI.

OpenAI

ChatGPT members can include their own GPTs in the GPT Store by setting them to be accessible to “Everyone” and then verifying a builder profile in ChatGPT settings. OpenAI plans to review GPTs to ensure they meet their policies and brand guidelines. GPTs that violate the rules can also be reported by users.

As promised by CEO Sam Altman during DevDay, OpenAI plans to share revenue with GPT creators. Unlike a smartphone app store, it appears that users will not sell their GPTs in the GPT Store, but instead, OpenAI will pay developers “based on user engagement with their GPTs.” The revenue program will launch in the first quarter of 2024, and OpenAI will provide more details on the criteria for receiving payments later.

“ChatGPT Team” is for teams who use ChatGPT

Also on Monday, OpenAI announced the cleverly named ChatGPT Team, a new group-based ChatGPT membership program akin to ChatGPT Enterprise, which the company launched last August. Unlike Enterprise, which is for large companies and does not have publicly listed prices, ChatGPT Team is a plan for “teams of all sizes” and costs US $25 a month per user (when billed annually) or US $30 a month per user (when billed monthly). By comparison, ChatGPT Plus costs $20 per month.

So what does ChatGPT Team offer above the usual ChatGPT Plus subscription? According to OpenAI, it “provides a secure, collaborative workspace to get the most out of ChatGPT at work.” Unlike Plus, OpenAI says it will not train AI models based on ChatGPT Team business data or conversations. It features an admin console for team management and the ability to share custom GPTs with your team. Like Plus, it also includes access to GPT-4 with the 32K context window, DALL-E 3, GPT-4 with Vision, Browsing, and Advanced Data Analysis—all with higher message caps.

Why would you want to use ChatGPT at work? OpenAI says it can help you generate better code, craft emails, analyze data, and more. Your mileage may vary, of course. As usual, our standard Ars warning about AI language models applies: “Bring your own data” for analysis, don’t rely on ChatGPT as a factual resource, and don’t rely on its outputs in ways you cannot personally confirm. OpenAI has provided more details about ChatGPT Team on its website.

OpenAI’s GPT Store lets ChatGPT users discover popular user-made chatbot roles Read More »