video synthesis

google’s-latest-ai-video-generator-can-render-cute-animals-in-implausible-situations

Google’s latest AI video generator can render cute animals in implausible situations

An elephant with a party hat—underwater —

Lumiere generates five-second videos that “portray realistic, diverse and coherent motion.”

Still images of AI-generated video examples provided by Google for its Lumiere video synthesis model.

Enlarge / Still images of AI-generated video examples provided by Google for its Lumiere video synthesis model.

On Tuesday, Google announced Lumiere, an AI video generator that it calls “a space-time diffusion model for realistic video generation” in the accompanying preprint paper. But let’s not kid ourselves: It does a great job at creating videos of cute animals in ridiculous scenarios, such as using roller skates, driving a car, or playing a piano. Sure, it can do more, but it is perhaps the most advanced text-to-animal AI video generator yet demonstrated.

According to Google, Lumiere utilizes unique architecture to generate a video’s entire temporal duration in one go. Or, as the company put it, “We introduce a Space-Time U-Net architecture that generates the entire temporal duration of the video at once, through a single pass in the model. This is in contrast to existing video models which synthesize distant keyframes followed by temporal super-resolution—an approach that inherently makes global temporal consistency difficult to achieve.”

In layperson terms, Google’s tech is designed to handle both the space (where things are in the video) and time (how things move and change throughout the video) aspects simultaneously. So, instead of making a video by putting together many small parts or frames, it can create the entire video, from start to finish, in one smooth process.

The official promotional video accompanying the paper “Lumiere: A Space-Time Diffusion Model for Video Generation,” released by Google.

Lumiere can also do plenty of party tricks, which are laid out quite well with examples on Google’s demo page. For example, it can perform text-to-video generation (turning a written prompt into a video), convert still images into videos, generate videos in specific styles using a reference image, apply consistent video editing using text-based prompts, create cinemagraphs by animating specific regions of an image, and offer video inpainting capabilities (for example, it can change the type of dress a person is wearing).

In the Lumiere research paper, the Google researchers state that the AI model outputs five-second long 1024×1024 pixel videos, which they describe as “low-resolution.” Despite those limitations, the researchers performed a user study and claim that Lumiere’s outputs were preferred over existing AI video synthesis models.

As for training data, Google doesn’t say where it got the videos they fed into Lumiere, writing, “We train our T2V [text to video] model on a dataset containing 30M videos along with their text caption. [sic] The videos are 80 frames long at 16 fps (5 seconds). The base model is trained at 128×128.”

A block diagram showing components of the Lumiere AI model, provided by Google.

Enlarge / A block diagram showing components of the Lumiere AI model, provided by Google.

AI-generated video is still in a primitive state, but it’s been progressing in quality over the past two years. In October 2022, we covered Google’s first publicly unveiled image synthesis model, Imagen Video. It could generate short 1280×768 video clips from a written prompt at 24 frames per second, but the results weren’t always coherent. Before that, Meta debuted its AI video generator, Make-A-Video. In June of last year, Runway’s Gen2 video synthesis model enabled the creation of two-second video clips from text prompts, fueling the creation of surrealistic parody commercials. And in November, we covered Stable Video Diffusion, which can generate short clips from still images.

AI companies often demonstrate video generators with cute animals because generating coherent, non-deformed humans is currently difficult—especially since we, as humans (you are human, right?), are adept at noticing any flaws in human bodies or how they move. Just look at AI-generated Will Smith eating spaghetti.

Judging by Google’s examples (and not having used it ourselves), Lumiere appears to surpass these other AI video generation models. But since Google tends to keep its AI research models close to its chest, we’re not sure when, if ever, the public may have a chance to try it for themselves.

As always, whenever we see text-to-video synthesis models getting more capable, we can’t help but think of the future implications for our Internet-connected society, which is centered around sharing media artifacts—and the general presumption that “realistic” video typically represents real objects in real situations captured by a camera. Future video synthesis tools more capable than Lumiere will make deceptive deepfakes trivially easy to create.

To that end, in the “Societal Impact” section of the Lumiere paper, the researchers write, “Our primary goal in this work is to enable novice users to generate visual content in an creative and flexible way. [sic] However, there is a risk of misuse for creating fake or harmful content with our technology, and we believe that it is crucial to develop and apply tools for detecting biases and malicious use cases in order to ensure a safe and fair use.”

Google’s latest AI video generator can render cute animals in implausible situations Read More »

a-song-of-hype-and-fire:-the-10-biggest-ai-stories-of-2023

A song of hype and fire: The 10 biggest AI stories of 2023

An illustration of a robot accidentally setting off a mushroom cloud on a laptop computer.

Getty Images | Benj Edwards

“Here, There, and Everywhere” isn’t just a Beatles song. It’s also a phrase that recalls the spread of generative AI into the tech industry during 2023. Whether you think AI is just a fad or the dawn of a new tech revolution, it’s been impossible to deny that AI news has dominated the tech space for the past year.

We’ve seen a large cast of AI-related characters emerge that includes tech CEOs, machine learning researchers, and AI ethicists—as well as charlatans and doomsayers. From public feedback on the subject of AI, we’ve heard that it’s been difficult for non-technical people to know who to believe, what AI products (if any) to use, and whether we should fear for our lives or our jobs.

Meanwhile, in keeping with a much-lamented trend of 2022, machine learning research has not slowed down over the past year. On X, former Biden administration tech advisor Suresh Venkatasubramanian wrote, “How do people manage to keep track of ML papers? This is not a request for support in my current state of bewilderment—I’m genuinely asking what strategies seem to work to read (or “read”) what appear to be 100s of papers per day.”

To wrap up the year with a tidy bow, here’s a look back at the 10 biggest AI news stories of 2023. It was very hard to choose only 10 (in fact, we originally only intended to do seven), but since we’re not ChatGPT generating reams of text without limit, we have to stop somewhere.

Bing Chat “loses its mind”

Aurich Lawson | Getty Images

In February, Microsoft unveiled Bing Chat, a chatbot built into its languishing Bing search engine website. Microsoft created the chatbot using a more raw form of OpenAI’s GPT-4 language model but didn’t tell everyone it was GPT-4 at first. Since Microsoft used a less conditioned version of GPT-4 than the one that would be released in March, the launch was rough. The chatbot assumed a temperamental personality that could easily turn on users and attack them, tell people it was in love with them, seemingly worry about its fate, and lose its cool when confronted with an article we wrote about revealing its system prompt.

Aside from the relatively raw nature of the AI model Microsoft was using, at fault was a system where very long conversations would push the conditioning system prompt outside of its context window (like a form of short-term memory), allowing all hell to break loose through jailbreaks that people documented on Reddit. At one point, Bing Chat called me “the culprit and the enemy” for revealing some of its weaknesses. Some people thought Bing Chat was sentient, despite AI experts’ assurances to the contrary. It was a disaster in the press, but Microsoft didn’t flinch, and it ultimately reigned in some of Bing Chat’s wild proclivities and opened the bot widely to the public. Today, Bing Chat is now known as Microsoft Copilot, and it’s baked into Windows.

US Copyright Office says no to AI copyright authors

An AI-generated image that won a prize at the Colorado State Fair in 2022, later denied US copyright registration.

Enlarge / An AI-generated image that won a prize at the Colorado State Fair in 2022, later denied US copyright registration.

Jason M. Allen

In February, the US Copyright Office issued a key ruling on AI-generated art, revoking the copyright previously granted to the AI-assisted comic book “Zarya of the Dawn” in September 2022. The decision, influenced by the revelation that the images were created using the AI-powered Midjourney image generator, stated that only the text and arrangement of images and text by Kashtanova were eligible for copyright protection. It was the first hint that AI-generated imagery without human-authored elements could not be copyrighted in the United States.

This stance was further cemented in August when a US federal judge ruled that art created solely by AI cannot be copyrighted. In September, the US Copyright Office rejected the registration for an AI-generated image that won a Colorado State Fair art contest in 2022. As it stands now, it appears that purely AI-generated art (without substantial human authorship) is in the public domain in the United States. This stance could be further clarified or changed in the future by judicial rulings or legislation.

A song of hype and fire: The 10 biggest AI stories of 2023 Read More »