tool use

these-scientists-built-their-own-stone-age-tools-to-figure-out-how-they-were-used

These scientists built their own Stone Age tools to figure out how they were used

hands-on experiments —

Telltale fractures and microscopic wear marks should be applicable to real artifacts.

Testing replica Stone Age tools with a bit of wood-scraping.

Enlarge / Testing replica Stone Age tools with a bit of wood-scraping.

A. Iwase et al., 2024/Tokyo Metropolitan University

When Japanese scientists wanted to learn more about how ground stone tools dating back to the Early Upper Paleolithic might have been used, they decided to build their own replicas of adzes, axes, and chisels and used those tools to perform tasks that might have been typical for that era. The resulting fractures and wear enabled them to develop new criteria for identifying the likely functions of ancient tools, according to a recent paper published in the Journal of Archaeological Science.  If these kinds of traces were indeed found on genuine Stone Age tools, it would be evidence that humans had been working with wood and honing techniques significantly earlier than previously believed.

The development of tools and techniques for woodworking purposes started out simple, with the manufacture of cruder tools like the spears and throwing sticks common in the early Stone Age. Later artifacts dating back to Mesolithic and Neolithic time periods were more sophisticated, as people learned how to use polished stone tools to make canoes, bows, wells, and to build houses. Researchers typically date the emergence of those stone tools to about 10,000 years ago. However, archaeologists have found lots of stone artifacts with ground edges dating as far back as 60,000 to 30,000 years ago. But it’s unclear how those tools might have been used.

So Akira Iwase of Tokyo Metropolitan University and co-authors made their own replicas of adzes and axes out of three raw materials common to the region between 38,000 and 30,000 years ago: semi-nephrite rocks, hornfels rocks, and tuff rocks. They used a stone hammer and anvil to create various long oval shapes and polished the edges with either a coarse-grained sandstone or a medium-grained tuff. There were three types of replica tools: adze-types, with the working edge oriented perpendicular to the long axis of a bent handle; axe-types, with a working edge parallel to the bent handle’s long axis; and chisel-types, in which a stone tool was placed at the end of a straight handle.

Testing various replicas of Stone Age tools for different uses: A, tree-felling; B, wood-adzing; C, wood-scraping; D, fresh bone-adzing; E, dry hide-scraping; F, disarticulation of a joint.

Enlarge / Testing various replicas of Stone Age tools for different uses: A, tree-felling; B, wood-adzing; C, wood-scraping; D, fresh bone-adzing; E, dry hide-scraping; F, disarticulation of a joint.

A. Iwase et al., 2024/Tokyo Metropolitan University

Then it was time to test the replica tools via ten different usage experiments. For instance, the authors used axe-type tools to fell Japanese cedar and maple trees in north central Honshu, as well as a forest near Tokyo Metropolitan University. Axe-type and adze-type tools were used to make a dugout canoe and wooden spears, while adze-type tools and chisel-type tools were used to scrape off the bark of fig and pine. They scraped flesh and grease from fresh and dry hides of deer and boar using adze-type and chisel-type tools. Finally, they used adze-type tools to disarticulate the femur and tibia joints of deer hindlimbs.

The team also conducted several experiments in which the tools were not used to identify accidental fractures not related to any tool-use function. For instance, flakes and blades can break in half during flint knapping; transporting tools in, say, small leather bags can cause microscopic flaking; and trampling on tools left on the ground can also modify the edges. All these scenarios were tested. All the tools used in both use and non-use experiments,ents were then examined for both macroscopic and microscopic traces of fracture or wear.

Traces left by tree-felling experiments on replica stone age tools. Characteristic macroscopic (top) and microscopic (bottom) traces might be used to determine how stone edges were used.

Enlarge / Traces left by tree-felling experiments on replica stone age tools. Characteristic macroscopic (top) and microscopic (bottom) traces might be used to determine how stone edges were used.

Tokyo Metropolitan University

The results: they were able to identify nine different types of macroscopic fractures, several of which were only seen when making percussive motions, particularly in the case of felling trees. There were also telltale microscopic traces resulting from friction between the wood and stone edge. Cutting away at antlers and bones caused a lot of damage to the edges of adze-like tools, creating long and/or wide bending fractures. The tools used for limb disarticulation caused fairly large bending fractures and smaller flaking scars, while only nine out of 21 of the scraping tools showed macroscopic signs of wear, despite hundreds of repeated strokes.

The authors concluded that examining macroscopic fracture patterns alone are insufficient to determine whether a given stone tool had been used percussively. Nor is any resulting micropolish from abrasion an unambiguous indicator on its own, since scraping motions produce a similar micropolish.  Combining the two, however, did yield more reliable conclusions about which tools had been used percussively to fell trees, compared to other uses, such as disarticulation of bones.

DOI: Journal of Archaeological Science, 2024. 10.1016/j.jas.2023.105891  (About DOIs).

These scientists built their own Stone Age tools to figure out how they were used Read More »

what-happens-in-a-crow’s-brain-when-it-uses-tools? 

What happens in a crow’s brain when it uses tools? 

This is your brain on tools —

Researchers trace the areas of the brain that are active when birds are using tools.

Three crows on the streets in the foreground with traffic and city lights blurry in the background.

Enlarge / Sure, they can use tools, but do they know where the nearest subway stop is?

“A thirsty crow wanted water from a pitcher, so he filled it with pebbles to raise the water level to drink,” summarizes a famous Aesop Fable. While this tale is thousands of years old, animal behaviorists still use this challenge to study corvids (which include crows, ravens, jays, and magpies) and their use of tools. In a recent Nature Communications study, researchers from a collaboration of universities across Washington, Florida, and Utah used radioactive tracers within the brains of several American crows to see which parts of their brains were active when they used stones to obtain food from the bottom of a water-filled tube.

Their results indicate that the motor learning and tactile control centers were activated in the brains of the more proficient crows, while the sensory and higher-order processing centers lit up in the brains of less proficient crows. These results suggest that competence with tools is linked to certain memories and muscle control, which the researchers claimed is similar to a ski jumper visualizing the course before jumping.

The researchers also found that out of their avian test subjects, female crows were especially proficient at tool usage, succeeding in the challenge quickly. “[A] follow-up question is whether female crows actually have more need for creative thinking relative to male crows,” elaborates Loma Pendergraft, the study’s first author and a graduate student at the University of Washington, who wants to understand if the caregiving and less dominant role of female crows gives them a higher capacity for tool use.

While only two species of crow (the New Caledonian crow and the Hawaiian crow) inherently use twigs and sticks as foraging tools, this study also suggests that other crow species, like the American crow, have the neural flexibility to learn to use tools.

A less invasive look at bird brains

Due to their unique behaviors, complex social structures, and reported intelligence, crows have fascinated animal behavioralists for decades. Scientists can study crows’ brains in real time by using 18F-fluorodeoxyglucose (FDG), a radioactive tracer, which the researchers injected into the crows’ brains. They then use positron emission tomography (PET) scans to see which brain areas are activated during different tasks.

“FDG-PET is a method we use to remotely examine activity throughout the entire brain without needing to do any surgeries or implants,” explained Pendergraft. “It’s like [a functional] MRI.” The FDG-PET method is non-invasive, as the crows aren’t required to sit still, which minimizes the stress the crows feel during the experiment.  In the Nature Communications study, Pendergraft and his team ensured the crows were anesthetized before scanning them.

FDG is also used in various medical imaging techniques, such as diagnosing Alzheimer’s disease or screening for cancerous tissue. “Basically, the body treats it as glucose, a substance needed for cells to stay alive,” Pendergraft added. “If a body part is working harder than normal, it’s going to need extra glucose to power the additional activity. This means we can measure relative FDG concentrations within the brain as a proxy for relative brain activity.”

What happens in a crow’s brain when it uses tools?  Read More »