supercomputers

nvidia-unveils-blackwell-b200,-the-“world’s-most-powerful-chip”-designed-for-ai

Nvidia unveils Blackwell B200, the “world’s most powerful chip” designed for AI

There’s no knowing where we’re rowing —

208B transistor chip can reportedly reduce AI cost and energy consumption by up to 25x.

The GB200

Enlarge / The GB200 “superchip” covered with a fanciful blue explosion.

Nvidia / Benj Edwards

On Monday, Nvidia unveiled the Blackwell B200 tensor core chip—the company’s most powerful single-chip GPU, with 208 billion transistors—which Nvidia claims can reduce AI inference operating costs (such as running ChatGPT) and energy consumption by up to 25 times compared to the H100. The company also unveiled the GB200, a “superchip” that combines two B200 chips and a Grace CPU for even more performance.

The news came as part of Nvidia’s annual GTC conference, which is taking place this week at the San Jose Convention Center. Nvidia CEO Jensen Huang delivered the keynote Monday afternoon. “We need bigger GPUs,” Huang said during his keynote. The Blackwell platform will allow the training of trillion-parameter AI models that will make today’s generative AI models look rudimentary in comparison, he said. For reference, OpenAI’s GPT-3, launched in 2020, included 175 billion parameters. Parameter count is a rough indicator of AI model complexity.

Nvidia named the Blackwell architecture after David Harold Blackwell, a mathematician who specialized in game theory and statistics and was the first Black scholar inducted into the National Academy of Sciences. The platform introduces six technologies for accelerated computing, including a second-generation Transformer Engine, fifth-generation NVLink, RAS Engine, secure AI capabilities, and a decompression engine for accelerated database queries.

Press photo of the Grace Blackwell GB200 chip, which combines two B200 GPUs with a Grace CPU into one chip.

Enlarge / Press photo of the Grace Blackwell GB200 chip, which combines two B200 GPUs with a Grace CPU into one chip.

Several major organizations, such as Amazon Web Services, Dell Technologies, Google, Meta, Microsoft, OpenAI, Oracle, Tesla, and xAI, are expected to adopt the Blackwell platform, and Nvidia’s press release is replete with canned quotes from tech CEOs (key Nvidia customers) like Mark Zuckerberg and Sam Altman praising the platform.

GPUs, once only designed for gaming acceleration, are especially well suited for AI tasks because their massively parallel architecture accelerates the immense number of matrix multiplication tasks necessary to run today’s neural networks. With the dawn of new deep learning architectures in the 2010s, Nvidia found itself in an ideal position to capitalize on the AI revolution and began designing specialized GPUs just for the task of accelerating AI models.

Nvidia’s data center focus has made the company wildly rich and valuable, and these new chips continue the trend. Nvidia’s gaming GPU revenue ($2.9 billion in the last quarter) is dwarfed in comparison to data center revenue (at $18.4 billion), and that shows no signs of stopping.

A beast within a beast

Press photo of the Nvidia GB200 NVL72 data center computer system.

Enlarge / Press photo of the Nvidia GB200 NVL72 data center computer system.

The aforementioned Grace Blackwell GB200 chip arrives as a key part of the new NVIDIA GB200 NVL72, a multi-node, liquid-cooled data center computer system designed specifically for AI training and inference tasks. It combines 36 GB200s (that’s 72 B200 GPUs and 36 Grace CPUs total), interconnected by fifth-generation NVLink, which links chips together to multiply performance.

A specification chart for the Nvidia GB200 NVL72 system.

Enlarge / A specification chart for the Nvidia GB200 NVL72 system.

“The GB200 NVL72 provides up to a 30x performance increase compared to the same number of NVIDIA H100 Tensor Core GPUs for LLM inference workloads and reduces cost and energy consumption by up to 25x,” Nvidia said.

That kind of speed-up could potentially save money and time while running today’s AI models, but it will also allow for more complex AI models to be built. Generative AI models—like the kind that power Google Gemini and AI image generators—are famously computationally hungry. Shortages of compute power have widely been cited as holding back progress and research in the AI field, and the search for more compute has led to figures like OpenAI CEO Sam Altman trying to broker deals to create new chip foundries.

While Nvidia’s claims about the Blackwell platform’s capabilities are significant, it’s worth noting that its real-world performance and adoption of the technology remain to be seen as organizations begin to implement and utilize the platform themselves. Competitors like Intel and AMD are also looking to grab a piece of Nvidia’s AI pie.

Nvidia says that Blackwell-based products will be available from various partners starting later this year.

Nvidia unveils Blackwell B200, the “world’s most powerful chip” designed for AI Read More »

us-gov’t-announces-arrest-of-former-google-engineer-for-alleged-ai-trade-secret-theft

US gov’t announces arrest of former Google engineer for alleged AI trade secret theft

Don’t trade the secrets dept. —

Linwei Ding faces four counts of trade secret theft, each with a potential 10-year prison term.

A Google sign stands in front of the building on the sidelines of the opening of the new Google Cloud data center in Hesse, Hanau, opened in October 2023.

Enlarge / A Google sign stands in front of the building on the sidelines of the opening of the new Google Cloud data center in Hesse, Hanau, opened in October 2023.

On Wednesday, authorities arrested former Google software engineer Linwei Ding in Newark, California, on charges of stealing AI trade secrets from the company. The US Department of Justice alleges that Ding, a Chinese national, committed the theft while secretly working with two China-based companies.

According to the indictment, Ding, who was hired by Google in 2019 and had access to confidential information about the company’s data centers, began uploading hundreds of files into a personal Google Cloud account two years ago.

The trade secrets Ding allegedly copied contained “detailed information about the architecture and functionality of GPU and TPU chips and systems, the software that allows the chips to communicate and execute tasks, and the software that orchestrates thousands of chips into a supercomputer capable of executing at the cutting edge of machine learning and AI technology,” according to the indictment.

Shortly after the alleged theft began, Ding was offered the position of chief technology officer at an early-stage technology company in China that touted its use of AI technology. The company offered him a monthly salary of about $14,800, plus an annual bonus and company stock. Ding reportedly traveled to China, participated in investor meetings, and sought to raise capital for the company.

Investigators reviewed surveillance camera footage that showed another employee scanning Ding’s name badge at the entrance of the building where Ding worked at Google, making him look like he was working from his office when he was actually traveling.

Ding also founded and served as the chief executive of a separate China-based startup company that aspired to train “large AI models powered by supercomputing chips,” according to the indictment. Prosecutors say Ding did not disclose either affiliation to Google, which described him as a junior employee. He resigned from Google on December 26 of last year.

The FBI served a search warrant at Ding’s home in January, seizing his electronic devices and later executing an additional warrant for the contents of his personal accounts. Authorities found more than 500 unique files of confidential information that Ding allegedly stole from Google. The indictment says that Ding copied the files into the Apple Notes application on his Google-issued Apple MacBook, then converted the Apple Notes into PDF files and uploaded them to an external account to evade detection.

“We have strict safeguards to prevent the theft of our confidential commercial information and trade secrets,” Google spokesperson José Castañeda told Ars Technica. “After an investigation, we found that this employee stole numerous documents, and we quickly referred the case to law enforcement. We are grateful to the FBI for helping protect our information and will continue cooperating with them closely.”

Attorney General Merrick Garland announced the case against the 38-year-old at an American Bar Association conference in San Francisco. Ding faces four counts of federal trade secret theft, each carrying a potential sentence of up to 10 years in prison.

US gov’t announces arrest of former Google engineer for alleged AI trade secret theft Read More »