Science

spacex-has-plans-to-launch-falcon-heavy-from-california—if-anyone-wants-it-to

SpaceX has plans to launch Falcon Heavy from California—if anyone wants it to

There’s more to the changes at Vandenberg than launching additional rockets. The authorization gives SpaceX the green light to redevelop Space Launch Complex 6 (SLC-6) to support Falcon 9 and Falcon Heavy missions. SpaceX plans to demolish unneeded structures at SLC-6 (pronounced “Slick 6”) and construct two new landing pads for Falcon boosters on a bluff overlooking the Pacific just south of the pad.

SpaceX currently operates from a single pad at Vandenberg—Space Launch Complex 4-East (SLC-4E)—a few miles north of the SLC-6 location. The SLC-4E location is not configured to launch the Falcon Heavy, an uprated rocket with three Falcon 9 boosters bolted together.

SLC-6, cocooned by hills on three sides and flanked by the ocean to the west, is no stranger to big rockets. It was first developed for the Air Force’s Manned Orbiting Laboratory program in the 1960s, when the military wanted to put a mini-space station into orbit for astronauts to spy on the Soviet Union. Crews readied the complex to launch military astronauts on top of Titan rockets, but the Pentagon canceled the program in 1969 before anything actually launched from SLC-6.

NASA and the Air Force then modified SLC-6 to launch space shuttles. The space shuttle Enterprise was stacked vertically at SLC-6 for fit checks in 1985, but the Air Force abandoned the Vandenberg-based shuttle program after the Challenger accident in 1986. The launch facility sat mostly dormant for nearly two decades until Boeing, and then United Launch Alliance, took over SLC-6 and began launching Delta IV rockets there in 2006.

The space shuttle Enterprise stands vertically at Space Launch Complex-6 at Vandenberg. NASA used the shuttle for fit checks at the pad, but it never launched from California. Credit: NASA

ULA launched its last Delta IV Heavy rocket from California in 2022, leaving the future of SLC-6 in question. ULA’s new rocket, the Vulcan, will launch from a different pad at Vandenberg. Space Force officials selected SpaceX in 2023 to take over the pad and prepare it to launch the Falcon Heavy, which has the lift capacity to carry the military’s most massive satellites into orbit.

No big rush

Progress at SLC-6 has been slow. It took nearly a year to prepare the Environmental Impact Statement. In reality, there’s no big rush to bring SLC-6 online. SpaceX has no Falcon Heavy missions from Vandenberg in its contract backlog, but the company is part of the Pentagon’s stable of launch providers. To qualify as a member of the club, SpaceX must have the capability to launch the Space Force’s heaviest missions from the military’s spaceports at Vandenberg and Cape Canaveral, Florida.

SpaceX has plans to launch Falcon Heavy from California—if anyone wants it to Read More »

antarctica-is-starting-to-look-a-lot-like-greenland—and-that-isn’t-good

Antarctica is starting to look a lot like Greenland—and that isn’t good


Global warming is awakening sleeping giants of ice at the South Pole.

A view of the Shoesmith Glacier on Horseshoe Island on Feb. 21. Credit: Sebnem Coskun/Anadolu via Getty Images

As recently as the 1990s, when the Greenland Ice Sheet and the rest of the Arctic region were measurably thawing under the climatic blowtorch of human-caused global warming, most of Antarctica’s vast ice cap still seemed securely frozen.

But not anymore. Physics is physics. As the planet heats up, more ice will melt at both poles, and recent research shows that Antarctica’s ice caps, glaciers, and floating ice shelves, as well as its sea ice, are just as vulnerable to warming as the Arctic.

Both satellite data and field observations in Antarctica reveal alarming signs of a Greenland-like meltdown, with increased surface melting of the ice fields, faster-moving glaciers, and dwindling sea ice. Some scientists are sounding the alarm, warning that the rapid “Greenlandification” of Antarctica will have serious consequences, including an accelerated rise in sea levels and significant shifts in rainfall and drought patterns.

The Antarctic ice sheet covers about 5.4 million square miles, an area larger than Europe. On average, it is more than 1 mile thick and holds 61 percent of all the fresh water on Earth, enough to raise the global average sea level by about 190 feet if it all melts. The smaller, western portion of the ice sheet is especially vulnerable, with enough ice to raise sea level more than 10 feet.

Thirty years ago, undergraduate students were told that the Antarctic ice sheets were going to be stable and that they weren’t going to melt much, said Ruth Mottram, an ice researcher with the Danish Meteorological Institute and lead author of a new paper in Nature Geoscience that examined the accelerating ice melt and other similarities between changes in northern and southern polar regions.

“We thought it was just going to take ages for any kind of climate impacts to be seen in Antarctica. And that’s really not true,” said Mottram, adding that some of the earliest warnings came from scientists who saw collapsing ice shelves, retreating glaciers, and increased surface melting in satellite data.

One of the early warning signs was the rapid collapse of an ice shelf along the narrow Antarctic Peninsula, which extends northward toward the tip of South America, said Helen Amanda Fricker, a geophysics professor with the Scripps Institute of Oceanography Polar Center at the University of California, San Diego.

Chunks of sea ice on the shore

Stranded remnants of sea ice along the Antarctic Peninsula are a reminder that much of the ice on the frozen continent around the South Pole is just as vulnerable to global warming as Arctic ice, where a long-term meltdown is well underway.

Credit: Bob Berwyn/Inside Climate News

Stranded remnants of sea ice along the Antarctic Peninsula are a reminder that much of the ice on the frozen continent around the South Pole is just as vulnerable to global warming as Arctic ice, where a long-term meltdown is well underway. Credit: Bob Berwyn/Inside Climate News

After a string of record-warm summers riddled the floating Rhode Island-sized slab of ice with cracks and meltwater ponds, it crumbled almost overnight. The thick, ancient ice dam was gone, and the seven major outlet glaciers behind it accelerated toward the ocean, raising sea levels as their ice melted.

“The Larsen B ice shelf collapse in 2002 was a staggering event in our community,” said Fricker, who was not an author of the new paper. “We just couldn’t believe the pace at which it happened, within six weeks. Basically, the ice shelves are there and then, boom, boom, boom, a series of melt streams and melt ponds. And then the whole thing collapsed, smattered into smithereens.”

Glaciologists never thought that events would happen that quickly in Antarctica, she said.

Same physics, same changes

Fricker said glaciologists thought of changes in Antarctica on millennial timescales, but the ice shelf collapse showed that extreme warming can lead to much more rapid change.

Current research focuses on the edges of Antarctica, where floating sea ice and relatively narrow outlet glaciers slow the flow of the ice cap toward the sea. She described the Antarctic Ice Sheet as a giant ice reservoir contained by a series of dams.

“If humans had built those containment structures,” she said, “we would think that they weren’t very adequate. We are relying on those dams to hold back all of that ice, but the dams are weakening all around Antarctica and releasing more ice into the ocean.”

Satellite view of ice cap coverage

A comparison of the average concentration of Antarctic sea ice.

Credit: NASA Earth Observatory

A comparison of the average concentration of Antarctic sea ice. Credit: NASA Earth Observatory

Credit: NASA Earth Observatory

The amount of ice that’s entered the ocean has increased fourfold since the 1990s, and she said, “We’re on the cusp of it becoming a really big number… because at some point, there’s no stopping it anymore.”

The Antarctic Ice Sheet is often divided into three sectors: the East Antarctic Ice Sheet, the largest and thickest; the West Antarctic Ice Sheet; and the Antarctic Peninsula, which is deemed the most vulnerable to thawing and melting.

Mottram, the new paper’s lead author, said a 2022 heatwave that penetrated to the coldest interior part of the East Antarctic Ice Sheet may be another sign that the continent is not as isolated from the rest of the global climate system as once thought. The extraordinary 2022 heatwave was driven by an atmospheric river, or a concentrated stream of moisture-laden air. Ongoing research “shows that there’s been an increase in the number of atmospheric rivers and an increase in their intensity,” she said.

Antarctica is also encircled by a powerful circumpolar ocean current that has prevented the Southern Ocean from warming as quickly as other ocean regions. But recent climate models and observations show the buffer is breaking down and that relatively warmer waters are starting to reach the base of the ice shelves, she said.

New maps detailing winds in the region show that “swirls of air from higher latitudes are dragging in all the time, so it’s not nearly as isolated as we were always told when we were students,” she said.

Ice researcher Eric Rignot, an Earth system science professor at the University of California, Irvine, who did not contribute to the new paper, said via email that recent research on Antarctica’s floating ice shelves emphasizes the importance of how the oceans and ice interact, a process that wasn’t studied very closely in early Greenland research. And Greenland shows what will happen to Antarctic glaciers in a warmer climate with more surface melt and more intense ice-ocean interactions, he added.

“We learn from both but stating that one is becoming the other is an oversimplification,” he said. “There is no new physics in Greenland that does not apply to Antarctica and vice versa.”

Rignot said the analogy between the two regions also partly breaks down because Greenland is warming up at two to three times the global average, “which has triggered a slowing of the jet stream,” with bigger wobbles and “weird weather patterns” in the Northern Hemisphere.

Antarctica is warming slightly less than the global average rate, according to a 2025 study, and the Southern Hemisphere jet stream is strengthening and tightening toward the South Pole, “behaving completely opposite,” he said.

Mottram said her new paper aims to help people understand that Antarctica is not as remote or isolated as often portrayed, and that what happens there will affect the rest of the global climate system.

“It’s not just this place far away that nobody goes to and nobody understands,” she said. “We actually understand quite a lot of what’s going on there. And so I also hope that it drives more urgency to decarbonize, because it’s very clear that the only way we’re going to get out of this problem is bringing our greenhouse gases down as much as possible, as soon as possible.”

This story originally appeared on Inside Climate News.

Photo of Inside Climate News

Antarctica is starting to look a lot like Greenland—and that isn’t good Read More »

rice-weevil-on-a-grain-of-rice-wins-2025-nikon-small-world-contest

Rice weevil on a grain of rice wins 2025 Nikon Small World contest

A stunning image of a rice weevil on a single grain of rice has won the 2025 Nikon Small World photomicrography contest, yielding valuable insight into the structure and behavior of—and providing a fresh perspective on—this well-known agricultural pest. The image was taken by Zhang You of Yunnan, China. Another of You’s photographs placed 15th in this year’s contest.

“It pays to dive deep into entomology: understanding insects’ behaviors and mastering lighting,” You said in a statement. “A standout work blends artistry with scientific rigor, capturing the very essence, energy, and spirit of these creatures.”

There was an element of luck in creating his winning image, too. “I had observed rice weevils in grains before, but never one with its wings spread,” You said. “This one was naturally preserved on a windowsill, perhaps in a final attempt to escape. Its tiny size makes manually preparing spread-wing specimens extremely difficult, so encountering it was both serendipitous and inspiring.”

Nikon’s annual contest was founded in 1974 “to showcase the beauty and complexity of things seen through the light microscope.” Photomicrography involves attaching a camera to a microscope (either an optical microscope or an electron microscope) so that the user can take photographs of objects at very high resolutions. British physiologist Richard Hill Norris was one of the first to use it for his studies of blood cells in 1850, and the method has increasingly been highlighted as art since the 1970s. There have been many groundbreaking technological advances in the ensuing decades, particularly with the advent of digital imaging methods.

Rice weevil on a grain of rice wins 2025 Nikon Small World contest Read More »

starship’s-elementary-era-ends-today-with-mega-rocket’s-11th-test-flight

Starship’s elementary era ends today with mega-rocket’s 11th test flight

Future flights of Starship will end with returns to Starbase, where the launch tower will try to catch the vehicle coming home from space, similar to the way SpaceX has shown it can recover the Super Heavy booster. A catch attempt with Starship is still at least a couple of flights away.

In preparation for future returns to Starbase, the ship on Flight 11 will perform a “dynamic banking maneuver” and test subsonic guidance algorithms prior to its final engine burn to brake for splashdown. If all goes according to plan, the flight will end with a controlled water landing in the Indian Ocean approximately 66 minutes after liftoff.

Turning point

Monday’s test flight will be the last Starship launch of the year as SpaceX readies a new generation of the rocket, called Version 3, for its debut sometime in early 2026. The new version of the rocket will fly with upgraded Raptor engines and larger propellant tanks and have the capability for refueling in low-Earth orbit.

Starship Version 3 will also inaugurate SpaceX’s second launch pad at Starbase, which has several improvements over the existing site, including a flame trench to redirect engine exhaust away from the pad. The flame trench is a common feature of many launch pads, but all of the Starship flights so far have used an elevated launch mount, or stool, over a water-cooled flame deflector.

The current launch complex is expected to be modified to accommodate future Starship V3s, giving the company two pads to support a higher flight rate.

NASA is counting on a higher flight rate for Starship next year to move closer to fulfilling SpaceX’s contract to provide a human-rated lander to the agency’s Artemis lunar program. SpaceX has contracts worth more than $4 billion to develop a derivative of Starship to land NASA astronauts on the Moon.

But much of SpaceX’s progress toward a lunar landing hinges on launching numerous Starships—perhaps a dozen or more—in a matter of a few weeks or months. SpaceX is activating the second launch pad in Texas and building several launch towers and a new factory in Florida to make this possible.

Apart from recovering and reusing Starship itself, the program’s most pressing near-term hurdle is the demonstration of in-orbit refueling, a prerequisite for any future Starship voyages to the Moon or Mars. This first refueling test could happen next year but will require Starship V3 to have a smoother introduction than Starship V2, which is retiring after Flight 11 with, at best, a 40 percent success rate.

Starship’s elementary era ends today with mega-rocket’s 11th test flight Read More »

rocket-report:-bezos’-firm-will-package-satellites-for-launch;-starship-on-deck

Rocket Report: Bezos’ firm will package satellites for launch; Starship on deck


The long, winding road for Franklin Chang-Diaz’s plasma rocket engine takes another turn.

Blue Origin’s second New Glenn booster left its factory this week for a road trip to the company’s launch pad a few miles away. Credit: Blue Origin

Welcome to Edition 8.14 of the Rocket Report! We’re now more than a week into a federal government shutdown, but there’s been little effect on the space industry. Military space operations are continuing unabated, and NASA continues preparations at Kennedy Space Center, Florida, for the launch of the Artemis II mission around the Moon early next year. The International Space Station is still flying with a crew of seven in low-Earth orbit, and NASA’s fleet of spacecraft exploring the cosmos remain active. What’s more, so much of what the nation does in space is now done by commercial companies largely (but not completely) immune from the pitfalls of politics. But the effect of the shutdown on troops and federal employees shouldn’t be overlooked. They will soon miss their first paychecks unless political leaders reach an agreement to end the stalemate.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Danger from dead rockets. A new listing of the 50 most concerning pieces of space debris in low-Earth orbit is dominated by relics more than a quarter-century old, primarily dead rockets left to hurtle through space at the end of their missions, Ars reports. “The things left before 2000 are still the majority of the problem,” said Darren McKnight, lead author of a paper presented October 3 at the International Astronautical Congress in Sydney. “Seventy-six percent of the objects in the top 50 were deposited last century, and 88 percent of the objects are rocket bodies. That’s important to note, especially with some disturbing trends right now.”

Littering in LEO … The disturbing trends mainly revolve around China’s actions in low-Earth orbit. “The bad news is, since January 1, 2024, we’ve had 26 rocket bodies abandoned in low-Earth orbit that will stay in orbit for more than 25 years,” McKnight told Ars. China is responsible for leaving behind 21 of those 26 rockets. Overall, Russia and the Soviet Union lead the pack with 34 objects listed in McKnight’s Top 50, followed by China with 10, the United States with three, Europe with two, and Japan with one. Russia’s SL-16 and SL-8 rockets are the worst offenders, combining to take 30 of the Top 50 slots. An impact with even a modestly sized object at orbital velocity would create countless pieces of debris, potentially triggering a cascading series of additional collisions clogging LEO with more and more space junk, a scenario called the Kessler Syndrome.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

New Shepard flies again. Blue Origin, Jeff Bezos’ space company, launched its sixth crewed New Shepard flight so far this year Wednesday as the company works to increase the vehicle’s flight rate, Space News reports. This was the 36th flight of Blue Origin’s suborbital New Shepard rocket. The passengers included: Jeff Elgin, Danna Karagussova, Clint Kelly III, Will Lewis, Aaron Newman, and Vitalii Ostrovsky. Blue Origin said it has now flown 86 humans (80 individuals) into space. The New Shepard booster returned to a pinpoint propulsive landing, and the capsule parachuted into the desert a few miles from the launch site near Van Horn, Texas.

Two-month turnaround … This flight continued Blue Origin’s trend of launching New Shepard about once per month. The company has two capsules and two boosters in its active inventory, and each vehicle has flown about once every two months this year. Blue Origin currently has command of the space tourism and suborbital research market as its main competitor in this sector, Virgin Galactic, remains grounded while it builds a next-generation rocket plane. (submitted by EllPeaTea)

NASA still interested in former astronaut’s rocket engine. NASA has awarded the Ad Astra Rocket Company a $4 million, two-year contract for the continued development of the company’s Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept, Aviation Week & Space Technology reports. Ad Astra, founded by former NASA astronaut Franklin Chang-Diaz, claims the vehicle has the potential to reach Mars with human explorers within 45 days using a nuclear power source rather than solar power. The new contract will enable federal funding to support development of the engine’s radio frequency, superconducting magnet, and structural exoskeleton subsystems.

Slow going … Houston-based Ad Astra said in a press release that it sees the high-power plasma engine as “nearing flight readiness.” We’ve heard this before. The VASIMR engine has been in development for decades now, beset by a lack of stable funding and the technical hurdles inherent in designing and testing such demanding technology. For example, Ad Astra once planned a critical 100-hour, 100-kilowatt ground test of the VASIMR engine in 2018. The test still hasn’t happened. Engineers discovered a core component of the engine tended to overheat as power levels approached 100 kilowatts, forcing a redesign that set the program back by at least several years. Now, Ad Astra says it is ready to build and test a pair of 150-kilowatt engines, one of which is intended to fly in space at the end of the decade.

Gilmour eyes return to flight next year. Australian rocket and satellite startup Gilmour Space Technologies is looking to return to the launch pad next year after the first attempt at an orbital flight failed over the summer, Aviation Week & Space Technology reports. “We are well capitalized. We are going to be launching again next year,” Adam Gilmour, the company’s CEO, said October 3 at the International Astronautical Congress in Sydney.

What happened? … Gilmour didn’t provide many details about the cause of the launch failure in July, other than to say it appeared to be something the company didn’t test for ahead of the flight. The Eris rocket flew for 14 seconds, losing control and crashing a short distance from the launch pad in the Australian state of Queensland. If there’s any silver lining, Gilmour said the failure didn’t damage the launch pad, and the rocket’s use of a novel hybrid propulsion system limited the destructive power of the blast when it struck the ground.

Stoke Space’s impressive funding haul. Stoke Space announced a significant capital raise on Wednesday, a total of $510 million as part of Series D funding. The new financing doubles the total capital raised by Stoke Space, founded in 2020, to $990 million, Ars reports. The infusion of money will provide the company with “the runway to complete development” of the Nova rocket and demonstrate its capability through its first flights, said Andy Lapsa, the company’s co-founder and chief executive, in a news release characterizing the new funding.

A futuristic design … Stoke is working toward a 2026 launch of the medium-lift Nova rocket. The rocket’s innovative design is intended to be fully reusable from the payload fairing on down, with a regeneratively cooled heat shield on the vehicle’s second stage. In fully reusable mode, Nova will have a payload capacity of 3 metric tons to low-Earth orbit, and up to 7 tons in fully expendable mode. Stoke is building a launch pad for the Nova rocket at Cape Canaveral Space Force Station, Florida.

SpaceX took an unusual break from launching. SpaceX launched its first Falcon 9 rocket from Florida in 12 days during the predawn hours of Tuesday morning, Spaceflight Now reports. The launch gap was highlighted by a run of persistent, daily storms in Central Florida and over the Atlantic Ocean, including hurricanes that prevented deployment of SpaceX’s drone ships to support booster landings. The break ended with the launch of 28 more Starlink broadband satellites. SpaceX launched three Starlink missions in the interim from Vandenberg Space Force Base, California.

Weather still an issue … Weather conditions on Florida’s Space Coast are often volatile, particularly in the evenings during summer and early autumn. SpaceX’s next launch from Florida was supposed to take off Thursday evening, but officials pushed it back to no earlier than Saturday due to a poor weather forecast over the next two days. Weather still gets a vote in determining whether a rocket lifts off or doesn’t, despite SpaceX’s advancements in launch efficiency and the Space Force’s improved weather monitoring capabilities at Cape Canaveral.

ArianeGroup chief departs for train maker. Current ArianeGroup CEO Martin Sion has been named the new head of French train maker Alstom. He will officially take up the role in April 2026, European Spaceflight reports. Sion assumed the role as ArianeGroup’s chief executive in 2023, replacing the former CEO who left the company after delays in the debut of its main product: the Ariane 6 rocket. Sion’s appointment was announced by Alstom, but ArianeGroup has not made any official statement on the matter.

Under pressure … The change in ArianeGroup’s leadership comes as the company ramps up production and increases the launch cadence of the Ariane 6 rocket, which has now flown three times, with a fourth launch due next month. ArianeGroup’s subsidiary, Arianespace, seeks to increase the Ariane 6’s launch cadence to 10 missions per year by 2029. ArianeGroup and its suppliers will need to drastically improve factory throughput to reach this goal.

New Glenn emerges from factory. Blue Origin rolled the first stage of its massive New Glenn rocket from its hangar on Wednesday morning in Florida, kicking off the final phase of the campaign to launch the heavy-lift vehicle for the second time, Ars reports. In sharing video of the rollout to Launch Complex-36 on Wednesday online, the space company did not provide a launch target for the mission, which seeks to put two small Mars-bound payloads into orbit. The pair of identical spacecraft to study the solar wind at Mars is known as ESCAPADE. However, sources told Ars that on the current timeline, Blue Origin is targeting a launch window of November 9 to November 11. This assumes pre-launch activities, including a static-fire test of the first stage, go well.

Recovery or bust? Blue Origin has a lot riding on this booster, named “Never Tell Me The Odds,” which it will seek to recover and reuse. Despite the name of the booster, the company is quietly confident that it will successfully land the first stage on a drone ship named Jacklyn. Internally, engineers at Blue Origin believe there is about a 75 percent chance of success. The first booster malfunctioned before landing on the inaugural New Glenn test flight in January. Company officials are betting big on recovering the booster this time, with plans to reuse it early next year to launch Blue’s first lunar lander to the Moon.

SpaceX gets bulk of this year’s military launch orders. Around this time each year, the US Space Force convenes a Mission Assignment Board to dole out contracts to launch the nation’s most critical national security satellites. The military announced this year’s launch orders Friday, and SpaceX was the big winner, Ars reports. Space Systems Command, the unit responsible for awarding military launch contracts, selected SpaceX to launch five of the seven missions up for assignment this year. United Launch Alliance (ULA), a 50-50 joint venture between Boeing and Lockheed Martin, won contracts for the other two. These missions for the Space Force and the National Reconnaissance Office are still at least a couple of years away from flying.

Vulcan getting more expensive A closer examination of this year’s National Security Space Launch contracts reveals some interesting things. The Space Force is paying SpaceX $714 million for the five launches awarded Friday, for an average of roughly $143 million per mission. ULA will receive $428 million for two missions, or $214 million for each launch. That’s about 50 percent more expensive than SpaceX’s price per mission. This is in line with the prices the Space Force paid SpaceX and ULA for last year’s contracts. However, look back a little further and you’ll find ULA’s prices for military launches have, for some reason, increased significantly over the last few years. In late 2023, the Space Force awarded a $1.3 billion deal to ULA for a batch of 11 launches at an average cost per mission of $119 million. A few months earlier, Space Systems Command assigned six launches to ULA for $672 million, or $112 million per mission.

Starship Flight 11 nears launch. SpaceX rolled the Super Heavy booster for the next test flight of the company’s Starship mega-rocket out to the launch pad in Texas this week. The booster stage, with 33 methane-fueled engines, will power the Starship into the upper atmosphere during the first few minutes of flight. This booster is flight-proven, having previously launched and landed on a test flight in March.

Next steps With the Super Heavy booster installed on the pad, the next step for SpaceX will be the rollout of the Starship upper stage. That is expected to happen in the coming days. Ground crews will raise Starship atop the Super Heavy booster to fully stack the rocket to its total height of more than 400 feet (120 meters). If everything goes well, SpaceX is targeting liftoff of the 11th full-scale test flight of Starship and Super Heavy as soon as Monday evening. (submitted by EllPeaTea)

Blue Origin takes on a new line of business. Blue Origin won a US Space Force competition to build a new payload processing facility at Cape Canaveral Space Force Station, Florida, Spaceflight Now reports. Under the terms of the $78.2 million contract, Blue Origin will build a new facility capable of handling payloads for up to 16 missions per year. The Space Force expects to use about half of that capacity, with the rest available to NASA or Blue Origin’s commercial customers. This contract award follows a $77.5 million agreement the Space Force signed with Astrotech earlier this year to expand the footprint of its payload processing facility at Vandenberg Space Force Base, California.

Important stuff … Ground infrastructure often doesn’t get the same level of attention as rockets, but the Space Force has identified bottlenecks in payload processing as potential constraints on ramping up launch cadences at the government’s spaceports in Florida and California. Currently, there are only a handful of payload processing facilities in the Cape Canaveral area, and most of them are only open to a single user, such as SpaceX, Amazon, the National Reconnaissance Office, or NASA. So, what exactly is payload processing? The Space Force said Blue Origin’s new facility will include space for “several pre-launch preparatory activities” that include charging batteries, fueling satellites, loading other gaseous and fluid commodities, and encapsulation. To accomplish those tasks, Blue Origin will create “a clean, secure, specialized high-bay facility capable of handling flight hardware, toxic fuels, and explosive materials.”

Next three launches

Oct. 11: Gravity 1 | Unknown Payload | Haiyang Spaceport, China Coastal Waters | 02: 15 UTC

Oct. 12: Falcon 9 | Project Kuiper KF-03 | Cape Canaveral Space Force Station, Florida | 00: 41 UTC

Oct. 13: Starship/Super Heavy | Flight 11 | Starbase, Texas | 23: 15 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Bezos’ firm will package satellites for launch; Starship on deck Read More »

“like-putting-on-glasses-for-the-first-time”—how-ai-improves-earthquake-detection

“Like putting on glasses for the first time”—how AI improves earthquake detection


AI is “comically good” at detecting small earthquakes—here’s why that matters.

Credit: Aurich Lawson | Getty Images

On January 1, 2008, at 1: 59 am in Calipatria, California, an earthquake happened. You haven’t heard of this earthquake; even if you had been living in Calipatria, you wouldn’t have felt anything. It was magnitude -0.53, about the same amount of shaking as a truck passing by. Still, this earthquake is notable, not because it was large but because it was small—and yet we know about it.

Over the past seven years, AI tools based on computer imaging have almost completely automated one of the fundamental tasks of seismology: detecting earthquakes. What used to be the task of human analysts—and later, simpler computer programs—can now be done automatically and quickly by machine-learning tools.

These machine-learning tools can detect smaller earthquakes than human analysts, especially in noisy environments like cities. Earthquakes give valuable information about the composition of the Earth and what hazards might occur in the future.

“In the best-case scenario, when you adopt these new techniques, even on the same old data, it’s kind of like putting on glasses for the first time, and you can see the leaves on the trees,” said Kyle Bradley, co-author of the Earthquake Insights newsletter.

I talked with several earthquake scientists, and they all agreed that machine-learning methods have replaced humans for the better in these specific tasks.

“It’s really remarkable,” Judith Hubbard, a Cornell University professor and Bradley’s co-author, told me.

Less certain is what comes next. Earthquake detection is a fundamental part of seismology, but there are many other data processing tasks that have yet to be disrupted. The biggest potential impacts, all the way to earthquake forecasting, haven’t materialized yet.

“It really was a revolution,” said Joe Byrnes, a professor at the University of Texas at Dallas. “But the revolution is ongoing.”

When an earthquake happens in one place, the shaking passes through the ground, similar to how sound waves pass through the air. In both cases, it’s possible to draw inferences about the materials the waves pass through.

Imagine tapping a wall to figure out if it’s hollow. Because a solid wall vibrates differently than a hollow wall, you can figure out the structure by sound.

With earthquakes, this same principle holds. Seismic waves pass through different materials (rock, oil, magma, etc.) differently, and scientists use these vibrations to image the Earth’s interior.

The main tool that scientists traditionally use is a seismometer. These record the movement of the Earth in three directions: up–down, north–south, and east–west. If an earthquake happens, seismometers can measure the shaking in that particular location.

An old-fashioned physical seismometer. Today, seismometers record data digitally. Credit: Yamaguchi先生 on Wikimedia CC BY-SA 3.0

Scientists then process raw seismometer information to identify earthquakes.

Earthquakes produce multiple types of shaking, which travel at different speeds. Two types, Primary (P) waves and Secondary (S) waves are particularly important, and scientists like to identify the start of each of these phases.

Before good algorithms, earthquake cataloging had to happen by hand. Byrnes said that “traditionally, something like the lab at the United States Geological Survey would have an army of mostly undergraduate students or interns looking at seismograms.”

However, there are only so many earthquakes you can find and classify manually. Creating algorithms to effectively find and process earthquakes has long been a priority in the field—especially since the arrival of computers in the early 1950s.

“The field of seismology historically has always advanced as computing has advanced,” Bradley told me.

There’s a big challenge with traditional algorithms, though: They can’t easily find smaller quakes, especially in noisy environments.

Composite seismogram of common events. Note how each event has a slightly different shape. Credit: EarthScope Consortium CC BY 4.0

As we see in the seismogram above, many different events can cause seismic signals. If a method is too sensitive, it risks falsely detecting events as earthquakes. The problem is especially bad in cities, where the constant hum of traffic and buildings can drown out small earthquakes.

However, earthquakes have a characteristic “shape.” The magnitude 7.7 earthquake above looks quite different from the helicopter landing, for instance.

So one idea scientists had was to make templates from human-labeled datasets. If a new waveform correlates closely with an existing template, it’s almost certainly an earthquake.

Template matching works very well if you have enough human-labeled examples. In 2019, Zach Ross’ lab at Caltech used template matching to find 10 times as many earthquakes in Southern California as had previously been known, including the earthquake at the start of this story. Almost all of the new 1.6 million quakes they found were very small, magnitude 1 and below.

If you don’t have an extensive pre-existing dataset of templates, however, you can’t easily apply template matching. That isn’t a problem in Southern California—which already had a basically complete record of earthquakes down to magnitude 1.7—but it’s a challenge elsewhere.

Also, template matching is computationally expensive. Creating a Southern California quake dataset using template matching took 200 Nvidia P100 GPUs running for days on end.

There had to be a better way.

AI detection models solve all of these problems:

  • They are faster than template matching.

  • Because AI detection models are very small (around 350,000 parameters compared to billions in LLMs like GPT4.0), they can be run on consumer CPUs.

  • AI models generalize well to regions not represented in the original dataset.

As an added bonus, AI models can give better information about when the different types of earthquake shaking arrive. Timing the arrivals of the two most important waves—P and S waves—is called phase picking. It allows scientists to draw inferences about the structure of the quake. AI models can do this alongside earthquake detection.

The basic task of earthquake detection (and phase picking) looks like this:

Cropped figure from Earthquake Transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Credit: Nature Communications

The first three rows represent different directions of vibration (east–west, north–south, and up–down respectively). Given these three dimensions of vibration, can we determine if an earthquake occurred, and if so, when it started?

We want to detect the initial P wave, which arrives directly from the site of the earthquake. But this can be tricky because echoes of the P wave may get reflected off other rock layers and arrive later, making the waveform more complicated.

Ideally, then, our model outputs three things at every time step in the sample:

  1. The probability that an earthquake is occurring at that moment.

  2. The probability that the first P wave arrives at that moment.

  3. The probability that the first S wave arrives at that moment.

We see all three outputs in the fourth row: the detection in green, the P wave arrival in blue, and the S wave arrival in red. (There are two earthquakes in this sample.)

To train an AI model, scientists take large amounts of labeled data, like what’s above, and do supervised training. I’ll describe one of the most used models: Earthquake Transformer, which was developed around 2020 by a Stanford University team led by S. Mostafa Mousavi, who later became a Harvard professor.

Like many earthquake detection models, Earthquake Transformer adapts ideas from image classification. Readers may be familiar with AlexNet, a famous image-recognition model that kicked off the deep-learning boom in 2012.

AlexNet used convolutions, a neural network architecture that’s based on the idea that pixels that are physically close together are more likely to be related. The first convolutional layer of AlexNet broke an image down into small chunks—11 pixels on a side—and classified each chunk based on the presence of simple features like edges or gradients.

The next layer took the first layer’s classifications as input and checked for higher-level concepts such as textures or simple shapes.

Each convolutional layer analyzed a larger portion of the image and operated at a higher level of abstraction. By the final layers, the network was looking at the entire image and identifying objects like “mushroom” and “container ship.”

Images are two-dimensional, so AlexNet is based on two-dimensional convolutions. By contrast, seismograph data is one-dimensional, so Earthquake Transformer uses one-dimensional convolutions over the time dimension. The first layer analyzes vibration data in 0.1-second chunks, while later layers identify patterns over progressively longer time periods.

It’s difficult to say what exact patterns the earthquake model is picking out, but we can analogize this to a hypothetical audio transcription model using one-dimensional convolutions. That model might first identify consonants, then syllables, then words, then sentences over increasing time scales.

Earthquake Transformer converts raw waveform data into a collection of high-level representations that indicate the likelihood of earthquakes and other seismologically significant events. This is followed by a series of deconvolution layers that pinpoint exactly when an earthquake—and its all-important P and S waves—occurred.

The model also uses an attention layer in the middle of the model to mix information between different parts of the time series. The attention mechanism is most famous in large language models, where it helps pass information between words. It plays a similar role in seismographic detection. Earthquake seismograms have a general structure: P waves followed by S waves followed by other types of shaking. So if a segment looks like the start of a P wave, the attention mechanism helps it check that it fits into a broader earthquake pattern.

All of the Earthquake Transformer’s components are standard designs from the neural network literature. Other successful detection models, like PhaseNet, are even simpler. PhaseNet uses only one-dimensional convolutions to pick the arrival times of earthquake waves. There are no attention layers.

Generally, there hasn’t been “much need to invent new architectures for seismology,” according to Byrnes. The techniques derived from image processing have been sufficient.

What made these generic architectures work so well then? Data. Lots of it.

Ars has previously reported on how the introduction of ImageNet, an image recognition benchmark, helped spark the deep learning boom. Large, publicly available earthquake datasets have played a similar role in seismology.

Earthquake Transformer was trained using the Stanford Earthquake Dataset (STEAD), which contains 1.2 million human-labeled segments of seismogram data from around the world. (The paper for STEAD explicitly mentions ImageNet as an inspiration). Other models, like PhaseNet, were also trained on hundreds of thousands or millions of labeled segments.

All recorded earthquakes in the Stanford Earthquake Dataset. Credit: IEEE (CC BY 4.0)

The combination of the data and the architecture just works. The current models are “comically good” at identifying and classifying earthquakes, according to Byrnes. Typically, machine-learning methods find 10 or more times the quakes that were previously identified in an area. You can see this directly in an Italian earthquake catalog:

From Machine learning and earthquake forecasting—next steps by Beroza et al. Credit: Nature Communications (CC-BY 4.0)

AI tools won’t necessarily detect more earthquakes than template matching. But AI-based techniques are much less compute- and labor-intensive, making them more accessible to the average research project and easier to apply in regions around the world.

All in all, these machine-learning models are so good that they’ve almost completely supplanted traditional methods for detecting and phase-picking earthquakes, especially for smaller magnitudes.

The holy grail of earthquake science is earthquake prediction. For instance, scientists know that a large quake will happen near Seattle but have little ability to know whether it will happen tomorrow or in a hundred years. It would be helpful if we could predict earthquakes precisely enough to allow people in affected areas to evacuate.

You might think AI tools would help predict earthquakes, but that doesn’t seem to have happened yet.

The applications are more technical and less flashy, said Cornell’s Judith Hubbard.

Better AI models have given seismologists much more comprehensive earthquake catalogs, which have unlocked “a lot of different techniques,” Bradley said.

One of the coolest applications is in understanding and imaging volcanoes. Volcanic activity produces a large number of small earthquakes, whose locations help scientists understand the structure of the magma system. In a 2022 paper, John Wilding and co-authors used a large AI-generated earthquake catalog to create this incredible image of the structure of the Hawaiian volcanic system.

Each dot represents an individual earthquake. Credit: Wilding et al., The magmatic web beneath Hawai‘i.

They provided direct evidence of a previously hypothesized magma connection between the deep Pāhala sill complex and Mauna Loa’s shallow volcanic structure. You can see this in the image with the arrow labeled as Pāhala-Mauna Loa seismicity band. The authors were also able to clarify the structure of the Pāhala sill complex into discrete sheets of magma. This level of detail could potentially facilitate better real-time monitoring of earthquakes and more accurate eruption forecasting.

Another promising area is lowering the cost of dealing with huge datasets. Distributed Acoustic Sensing (DAS) is a powerful technique that uses fiber-optic cables to measure seismic activity across the entire length of the cable. A single DAS array can produce “hundreds of gigabytes of data” a day, according to Jiaxuan Li, a professor at the University of Houston. That much data can produce extremely high-resolution datasets—enough to pick out individual footsteps.

AI tools make it possible to very accurately time earthquakes in DAS data. Before the introduction of AI techniques for phase picking in DAS data, Li and some of his collaborators attempted to use traditional techniques. While these “work roughly,” they weren’t accurate enough for their downstream analysis. Without AI, much of his work would have been “much harder,” he told me.

Li is also optimistic that AI tools will be able to help him isolate “new types of signals” in the rich DAS data in the future.

Not all AI techniques have paid off

As in many other scientific fields, seismologists face some pressure to adopt AI methods, whether or not they are relevant to their research.

“The schools want you to put the word AI in front of everything,” Byrnes said. “It’s a little out of control.”

This can lead to papers that are technically sound but practically useless. Hubbard and Bradley told me that they’ve seen a lot of papers based on AI techniques that “reveal a fundamental misunderstanding of how earthquakes work.”

They pointed out that graduate students can feel pressure to specialize in AI methods at the cost of learning less about the fundamentals of the scientific field. They fear that if this type of AI-driven research becomes entrenched, older methods will get “out-competed by a kind of meaninglessness.”

While these are real issues, and ones Understanding AI has reported on before, I don’t think they detract from the success of AI earthquake detection. In the last five years, an AI-based workflow has almost completely replaced one of the fundamental tasks in seismology for the better.

That’s pretty cool.

Kai Williams is a reporter for Understanding AI, a Substack newsletter founded by Ars Technica alum Timothy B. Lee. His work is supported by a Tarbell Fellowship. Subscribe to Understanding AI to get more from Tim and Kai.

“Like putting on glasses for the first time”—how AI improves earthquake detection Read More »

putin-oks-plan-to-turn-russian-spacecraft-into-flying-billboards

Putin OKs plan to turn Russian spacecraft into flying billboards

These are tough times for Russia’s civilian space program. In the last few years, Russia has cut back on the number of Soyuz crew missions it is sending to the International Space Station, and a replacement for the nearly 60-year-old Soyuz spacecraft remains elusive.

While the United States and China are launching more space missions than ever before, Russia’s once-dominant launch cadence is on a downhill slide.

Russia’s access to global markets dried up after Russian President Vladimir Putin launched the country’s invasion of Ukraine in February 2022. The fallout from the invasion killed several key space partnership between Russia and Europe. Russia’s capacity to do new things in space seems to be focused on military programs like anti-satellite weapons.

The Roscosmos State Corporation for Space Activities, Russia’s official space agency, may have a plan to offset the decline. Late last month, Putin approved changes to federal laws governing advertising and space activities to “allow for the placement of advertising on spacecraft,” Roscosmos posted on its official Telegram account.

We’ve seen this before

The Russian State Duma, dominated by Putin loyalists, previously approved the amendments.

“According to the amendments, Roscosmos has been granted the right, effective January 1, 2026, to place advertising on space objects owned by both the State Corporation itself and federally,” Roscosmos said. “The amendments will create a mechanism for attracting private investment in Russian space exploration and reduce the burden on the state budget.”

The law requires that advertising symbols not affect spacecraft safety. The Russian government said it will establish a fee structure for advertising on federally owned space objects.

Roscosmos didn’t say this, but advertisers eligible for the offer will presumably be limited to Russia and its allies. Any ads from the West would likely violate sanctions.

Rocket-makers have routinely applied decals, stickers, and special paint jobs to their vehicles. This is a particularly popular practice in Russia. Usually, these logos represent customers and suppliers. Sometimes they honor special occasions, like the 60th anniversary of the first human spaceflight mission by Soviet cosmonaut Yuri Gagarin and the 80th anniversary of the end of World War II.

Putin OKs plan to turn Russian spacecraft into flying billboards Read More »

termite-farmers-fine-tune-their-weed-control

Termite farmers fine-tune their weed control

Odontotermes obesus is one of the termite species that grows fungi, called Termitomyces, in their mounds. Workers collect dead leaves, wood, and grass to stack them in underground fungus gardens called combs. There, the fungi break down the tough plant fibers, making them accessible for the termites in an elaborate form of symbiotic agriculture.

Like any other agriculturalist, however, the termites face a challenge: weeds. “There have been numerous studies suggesting the termites must have some kind of fixed response—that they always do the same exact thing when they detect weed infestation,” says Rhitoban Raychoudhury, a professor of biological sciences at the Indian Institute of Science Education, “but that was not the case.” In a new Science study, Raychoudhury’s team discovered that termites have pretty advanced, surprisingly human-like gardening practices.

Going blind

Termites do not look like particularly good gardeners at first glance. They are effectively blind, which is not that surprising considering they spend most of their life in complete darkness working in endless corridors of their mounds. But termites make up for their lack of sight with other senses. “They can detect the environment based on advanced olfactory reception and touch, and I think this is what they use to identify the weeds in their gardens,” Raychoudhury says. To learn how termites react once they detect a weed infestation, his team collected some Odontotermes obesus and challenged them with different gardening problems.

The experimental setup was quite simple. The team placed some autoclaved soil sourced from termite mounds into glass Petri dishes. On this soil, Raychoudhury and his colleagues placed two fungus combs in each dish. The first piece acted as a control and was a fresh, uninfected comb with Termitomyces. “Besides acting as a control, it was also there to make sure the termites have the food because it is very hard for them to survive outside their mounds,” Raychoudhury explains. The second piece was intentionally contaminated with Pseudoxylaria, a filamentous fungal weed that often takes over Termitomyces habitats in termite colonies.

Termite farmers fine-tune their weed control Read More »

we’re-about-to-find-many-more-interstellar-interlopers—here’s-how-to-visit-one

We’re about to find many more interstellar interlopers—here’s how to visit one


“You don’t have to claim that they’re aliens to make these exciting.”

The Hubble Space Telescope captured this image of the interstellar comet 3I/ATLAS on July 21, when the comet was 277 million miles from Earth. Hubble shows that the comet has a teardrop-shaped cocoon of dust coming off its solid, icy nucleus. Credit: NASA, ESA, David Jewitt (UCLA); Image Processing: Joseph DePasquale (STScI)

The Hubble Space Telescope captured this image of the interstellar comet 3I/ATLAS on July 21, when the comet was 277 million miles from Earth. Hubble shows that the comet has a teardrop-shaped cocoon of dust coming off its solid, icy nucleus. Credit: NASA, ESA, David Jewitt (UCLA); Image Processing: Joseph DePasquale (STScI)

A few days ago, an inscrutable interstellar interloper made its closest approach to Mars, where a fleet of international spacecraft seek to unravel the red planet’s ancient mysteries.

Several of the probes encircling Mars took a break from their usual activities and turned their cameras toward space to catch a glimpse of an object named 3I/ATLAS, a rogue comet that arrived in our Solar System from interstellar space and is now barreling toward perihelion—its closest approach to the Sun—at the end of this month.

This is the third interstellar object astronomers have detected within our Solar System, following 1I/ʻOumuamua and 2I/Borisov discovered in 2017 and 2019. Scientists think interstellar objects routinely transit among the planets, but telescopes have only recently had the ability to find one. For example, the telescope that discovered Oumuamua only came online in 2010.

Detectable but still unreachable

Astronomers first reported observations of 3I/ATLAS on July 1, just four months before reaching its deepest penetration into the Solar System. Unfortunately for astronomers, the particulars of this object’s trajectory will bring it to perihelion when the Earth is on the opposite side of the Sun. The nearest 3I/ATLAS will come to Earth is about 170 million miles (270 million kilometers) in December, eliminating any chance for high-resolution imaging. The viewing geometry also means the Sun’s glare will block all direct views of the comet from Earth until next month.

The James Webb Space Telescope observed interstellar comet 3I/ATLAS on August 6 with its Near-Infrared Spectrograph instrument. Credit: NASA/James Webb Space Telescope

Because of that, the closest any active spacecraft will get to 3I/ATLAS happened Friday, when it passed less than 20 million miles (30 million kilometers) from Mars. NASA’s Perseverance rover and Mars Reconnaissance Orbiter were expected to make observations of 3I/ATLAS, along with Europe’s Mars Express and ExoMars Trace Gas Orbiter missions.

The best views of the object so far have been captured by the James Webb Space Telescope and the Hubble Space Telescope, positioned much closer to Earth. Those observations helped astronomers narrow down the object’s size, but the estimates remain imprecise. Based on Hubble’s images, the icy core of 3I/ATLAS is somewhere between the size of the Empire State Building to something a little larger than Central Park.

That may be the most we’ll ever know about the dimensions of 3I/ATLAS. The spacecraft at Mars lack the exquisite imaging sensitivity of Webb and Hubble, so don’t expect spectacular views from Friday’s observations. But scientists hope to get a better handle on the cloud of gas and dust surrounding the object, giving it the appearance of a comet. Spectroscopic observations have shown the coma around 3I/ATLAS contains water vapor and an unusually strong signature of carbon dioxide extending out nearly a half-million miles.

On Tuesday, the European Space Agency released the first grainy images of 3I/ATLAS captured at Mars. The best views will come from a small telescope called HiRISE on NASA’s Mars Reconnaissance Orbiter. The images from NASA won’t be released until after the end of the ongoing federal government shutdown, according to a member of the HiRISE team.

Europe’s ExoMars Trace Gas Orbiter turned its eyes toward interstellar comet 3I/ATLAS as it passed close to Mars on Friday, October 3. The comet’s coma is visible as a fuzzy blob surrounding its nucleus, which was not resolved by the spacecraft’s camera. Credit: ESA/TGO/CaSSIS

Studies of 3I/ATLAS suggest it was probably kicked out of another star system, perhaps by an encounter with a giant planet. Comets in our Solar System sometimes get ejected into the Milky Way galaxy when they come too close to Jupiter. It roamed the galaxy for billions of years before arriving in the Sun’s galactic neighborhood.

The rogue comet is now gaining speed as gravity pulls it toward perihelion, when it will max out at a relative velocity of 152,000 mph (68 kilometers per second), much too fast to be bound into a closed orbit around the Sun. Instead, the comet will catapult back into the galaxy, never to be seen again.

We need to talk about aliens

Anyone who studies planetary formation would relish the opportunity to get a close-up look at an interstellar object. Sending a mission to one would undoubtedly yield a scientific payoff. There’s a good chance that many of these interlopers have been around longer than our own 4.5 billion-year-old Solar System.

One study from the University of Oxford suggests that 3I/ATLAS came from the “thick disk” of the Milky Way, which is home to a dense population of ancient stars. This origin story would mean the comet is probably more than 7 billion years old, holding clues about cosmic history that are simply inaccessible among the planets, comets, and asteroids that formed with the birth of the Sun.

This is enough reason to mount a mission to explore one of these objects, scientists said. It doesn’t need justification from unfounded theories that 3I/ATLAS might be an artifact of alien technology, as proposed by Harvard University astrophysicist Avi Loeb. The scientific consensus is that the object is of natural origin.

Loeb shared a similar theory about the first interstellar object found wandering through our Solar System. His statements have sparked questions in popular media about why the world’s space agencies don’t send a probe to actually visit one. Loeb himself proposed redirecting NASA’s Juno spacecraft in orbit around Jupiter on a mission to fly by 3I/ATLAS, and his writings prompted at least one member of Congress to write a letter to NASA to “rejuvenate” the Juno mission by breaking out of Jupiter’s orbit and taking aim at 3I/ATLAS for a close-up inspection.

The problem is that Juno simply doesn’t have enough fuel to reach the comet, and its main engine is broken. In fact, the total boost required to send Juno from Jupiter to 3I/ATLAS (roughly 5,800 mph or 2.6 kilometers per second) would surpass the fuel capacity of most interplanetary probes.

Ars asked Scott Bolton, lead scientist on the Juno mission, and he confirmed that the spacecraft lacks the oomph required for the kind of maneuvers proposed by Loeb. “We had no role in that paper,” Bolton told Ars. “He assumed propellant that we don’t really have.”

Avi Loeb, a Harvard University astrophysicist. Credit: Anibal Martel/Anadolu Agency via Getty Images

So Loeb’s exercise was moot, but his talk of aliens has garnered public attention. Loeb appeared on the conservative network Newsmax last week to discuss his theory of 3I/ATLAS alongside Rep. Tim Burchett (R-Tenn.). Predictably, conspiracy theories abounded. But as of Tuesday, the segment has 1.2 million views on YouTube. Maybe it’s a good thing that people who approve government budgets, especially those without a preexisting interest in NASA, are eager to learn more about the Universe. We will leave it to the reader to draw their own conclusions on that matter.

Loeb’s calculations also help illustrate the difficulty of pulling off a mission to an interstellar object. So far, we’ve only known about an incoming interstellar intruder a few months before it comes closest to Earth. That’s not to mention the enormous speeds at which these objects move through the Solar System. It’s just not feasible to build a spacecraft and launch it on such short notice.

Now, some scientists are working on ways to overcome these limitations.

So you’re saying there’s a chance?

One of these people is Colin Snodgrass, an astronomer and planetary scientist at the University of Edinburgh. A few years ago, he helped propose to the European Space Agency a mission concept that would have very likely been laughed out of the room a generation ago. Snodgrass and his team wanted a commitment from ESA of up to $175 million (150 million euros) to launch a mission with no idea of where it would go.

ESA officials called Snodgrass in 2019 to say the agency would fund his mission, named Comet Interceptor, for launch in the late 2020s. The goal of the mission is to perform the first detailed observations of a long-period comet. So far, spacecraft have only visited short-period comets that routinely dip into the inner part of the Solar System.

A long-period comet is an icy visitor from the farthest reaches of the Solar System that has spent little time getting blasted by the Sun’s heat and radiation, freezing its physical and chemical properties much as they were billions of years ago.

Long-period comets are typically discovered a year or two before coming near the Sun, still not enough time to develop a mission from scratch. With Comet Interceptor, ESA will launch a probe to loiter in space a million miles from Earth, wait for the right comet to come along, then fire its engines to pursue it.

Odds are good that the right comet will come from within the Solar System. “That is the point of the mission,” Snodgrass told Ars.

ESA’s Comet Interceptor will be the first mission to visit a comet coming directly from the outer reaches of the Sun’s realm, carrying material untouched since the dawn of the Solar System. Credit: European Space Agency

But if astronomers detect an interstellar object coming toward us on the right trajectory, there’s a chance Comet Interceptor could reach it.

“I think that the entire science team would agree, if we get really lucky and there’s an interstellar object that we could reach, then to hell with the normal plan, let’s go and do this,” Snodgrass said. “It’s an opportunity you couldn’t just leave sitting there.”

But, he added, it’s “very unlikely” that an interstellar object will be in the right place at the right time. “Although everyone’s always very excited about the possibility, and we’re excited about the possibility, we kind of try and keep the expectations to a realistic level.”

For example, if Comet Interceptor were in space today, there’s no way it could reach 3I/ATLAS. “It’s an unfortunate one,” Snodgrass said. “Its closest point to the Sun, it reaches that on the other side of the Sun from where the Earth is. Just bad timing.” If an interceptor were parked somewhere else in the Solar System, it might be able to get itself in position for an encounter with 3I/ATLAS. “There’s only so much fuel aboard,” Snodgrass said. “There’s only so fast we can go.”

It’s even harder to send a spacecraft to encounter an interstellar object than it is to visit one of the Solar System’s homegrown long-period comets. The calculation of whether Comet Interceptor could reach one of these galactic visitors boils down to where it’s heading and when astronomers discover it.

Snodgrass is part of a team using big telescopes to observe 3I/ATLAS from a distance. “As it’s getting closer to the Sun, it is getting brighter,” he said in an interview.

“You don’t have to claim that they’re aliens to make these exciting,” Snodgrass said. “They’re interesting because they are a bit of another solar system that you can actually feasibly get an up-close view of, even the sort of telescopic views we’re getting now.”

Colin Snodgrass, a professor at the University of Edinburgh, leads the Comet Interceptor science team. Credit: University of Edinburgh

Comets and asteroids are the linchpins for understanding the formation of the Solar System. These modest worlds are the leftover building blocks from the debris that coalesced into the planets. Today, direct observations have only allowed scientists to study the history of one planetary system. An interstellar comet would grow the sample size to two.

Still, Snodgrass said his team prefers to keep their energy focused on reaching a comet originating from the frontier of our own Solar System. “We’re not going to let a very lovely Solar System comet go by, waiting to see ‘what if there’s an interstellar thing?'” he said.

Snodgrass sees Comet Interceptor as a proof of concept for scientists to propose a future mission specially designed to travel to an interstellar object. “You need to figure out how do you build the souped-up version that could really get to an interstellar object? I think that’s five or 10 years away, but [it’s] entirely realistic.”

An American answer

Scientists in the United States are working on just such a proposal. A team from the Southwest Research Institute completed a concept study showing how a mission could fly by one of these interstellar visitors. What’s more, the US scientists say their proposed mission could have actually reached 3I/ATLAS had it already been in space.

The American concept is similar to Europe’s Comet Interceptor in that it will park a spacecraft somewhere in deep space and wait for the right target to come along. The study was led by Alan Stern, the chief scientist on NASA’s New Horizons mission that flew by Pluto a decade ago. “These new kinds of objects offer humankind the first feasible opportunity to closely explore bodies formed in other star systems,” he said.

An animation of the trajectory of 3I/ATLAS through the inner Solar System. Credit: NASA/JPL

It’s impossible with current technology to send a spacecraft to match orbits and rendezvous with a high-speed interstellar comet. “We don’t have to catch it,” Stern recently told Ars. “We just have to cross its orbit. So it does carry a fair amount of fuel in order to get out of Earth’s orbit and onto the comet’s path to cross that path.”

Stern said his team developed a cost estimate for such a mission, and while he didn’t disclose the exact number, he said it would fall under NASA’s cost cap for a Discovery-class mission. The Discovery program is a line of planetary science missions that NASA selects through periodic competitions within the science community. The cost cap for NASA’s next Discovery competition is expected to be $800 million, not including the launch vehicle.

A mission to encounter an interstellar comet requires no new technologies, Stern said. Hopes for such a mission are bolstered by the activation of the US-funded Vera Rubin Observatory, a state-of-the-art facility high in the mountains of Chile set to begin deep surveys of the entire southern sky later this year. Stern predicts Rubin will discover “one or two” interstellar objects per year. The new observatory should be able to detect the faint light from incoming interstellar bodies sooner, providing missions with more advance warning.

“If we put a spacecraft like this in space for a few years, while it’s waiting, there should be five or 10 to choose from,” he said.

Alan Stern speaks onstage during Day 1 of TechCrunch Disrupt SF 2018 in San Francisco. Credit: Photo by Kimberly White/Getty Images for TechCrunch

Winning NASA funding for a mission like Stern’s concept will not be easy. It must compete with dozens of other proposals, and NASA’s next Discovery competition is probably at least two or three years away. The timing of the competition is more uncertain than usual due to swirling questions about NASA’s budget after the Trump administration announced it wants to cut the agency’s science funding in half.

Comet Interceptor, on the other hand, is already funded in Europe. ESA has become a pioneer in comet exploration. The Giotto probe flew by Halley’s Comet in 1986, becoming the first spacecraft to make close-up observations of a comet. ESA’s Rosetta mission became the first spacecraft to orbit a comet in 2014, and later that year, it deployed a German-built lander to return the first data from the surface of a comet. Both of those missions explored short-period comets.

“Each time that ESA has done a comet mission, it’s done something very ambitious and very new,” Snodgrass said. “The Giotto mission was the first time ESA really tried to do anything interplanetary… And then, Rosetta, putting this thing in orbit and landing on a comet was a crazy difficult thing to attempt to do.”

“They really do push the envelope a bit, which is good because ESA can be quite risk averse, I think it’s fair to say, with what they do with missions,” he said. “But the comet missions, they are things where they’ve really gone for that next step, and Comet Interceptor is the same. The whole idea of trying to design a space mission before you know where you’re going is a slightly crazy way of doing things. But it’s the only way to do this mission. And it’s great that we’re trying it.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

We’re about to find many more interstellar interlopers—here’s how to visit one Read More »

chemistry-nobel-prize-awarded-for-building-ordered-polymers-with-metal

Chemistry Nobel prize awarded for building ordered polymers with metal

Unlike traditional polymers, this structure allows MOFs to have open internal spaces with a well-defined size, which can allow some molecules to pass through while filtering out others. In addition, the presence of metals provides for interesting chemistry. The metals can serve as catalysts or preferentially bind to one molecule within a mixture.

Knowing what we know now, it all seems kind of obvious that this would work. But when Robson started his work at the University of Melbourne, the few people who thought about the issue at all expected that the molecules he was building would be unstable and collapse.

The first MOF Robson built used copper as its metal of choice. It was linked to an organic molecule that retained its rigid structure through the presence of a benzene ring, which doesn’t bend. Both the organic molecule and the copper could form four different bonds, allowing the structure to grow by doing the rough equivalent of stacking a bunch of three-sided pyramids—a conscious choice by Robson.

Image of multiple triangular chemicals stacked on top of each other, forming a structure with lots of open internal spaces.

The world’s first MOF, synthesized by Robson and his colleagues. Credit: Johan Jarnestad/The Royal Swedish Academy of Sciences

In this case, however, the internal cavities remained filled by the solvent in which the MOF was formed. But the solvent could move freely through the material. Still, based on this example, Robson predicted many of the properties that have since been engineered into different MOFs: the ability to retain their structure even after solvents are removed, the presence of catalytic sites, and the ability of MOFs to act as filters.

Expanding the concept

All of that might seem a very optimistic take for someone’s first effort. But the measure of Robson’s success is that he convinced other chemists of the potential. One was Susumu Kitagawa of Kyoto University. Kitagawa and his collaborators built a MOF that had large internal channels that extended the entire length of the material. Made in a watery solution, the MOF could be dried out and have gas flow through it, with the structure retaining molecules like oxygen, nitrogen, and methane.

Chemistry Nobel prize awarded for building ordered polymers with metal Read More »

2025-nobel-prize-in-physics-awarded-for-macroscale-quantum-tunneling

2025 Nobel Prize in Physics awarded for macroscale quantum tunneling


John Clarke, Michel H. Devoret, and John Martinis built an electrical circuit-based oscillator on a microchip.

A device consisting of four transmon qubits, four quantum buses, and four readout resonators fabricated by IBM in 2017. Credit: ay M. Gambetta, Jerry M. Chow & Matthias Steffen/CC BY 4.0

The 2025 Nobel Prize in Physics has been awarded to John Clarke, Michel H. Devoret, and John M. Martinis “for the discovery of macroscopic quantum tunneling and energy quantization in an electrical circuit.” The Nobel committee said during a media briefing that the laureates’ work provides opportunities to develop “the next generation of quantum technology, including quantum cryptography, quantum computers, and quantum sensors.” The three men will split the $1.1 million (11 million Swedish kroner) prize money. The presentation ceremony will take place in Stockholm on December 10, 2025.

“To put it mildly, it was the surprise of my life,” Clarke told reporters by phone during this morning’s press conference. “Our discovery in some ways is the basis of quantum computing. Exactly at this moment where this fits in is not entirely clear to me. One of the underlying reasons that cellphones work is because of all this work.”

When physicists began delving into the strange new realm of subatomic particles in the early 20th century, they discovered a realm where the old, deterministic laws of classical physics no longer apply. Instead, uncertainty reigns supreme. It is a world governed not by absolutes, but by probabilities, where events that would seem impossible on the macroscale occur on a regular basis.

For instance, subatomic particles can “tunnel” through seemingly impenetrable energy barriers. Imagine that an electron is a water wave trying to surmount a tall barrier. Unlike water, if the electron’s wave is shorter than the barrier, there is still a small probability that it will seep through to the other side.

This neat little trick has been experimentally verified many times. In the 1950s, physicists devised a system in which the flow of electrons would hit an energy barrier and stop because they lacked sufficient energy to surmount that obstacle. But some electrons didn’t follow the established rules of behavior. They simply tunneled right through the energy barrier.

(l-r): John Clarke, Michel H. Devoret and John M. Martinis

(l-r): John Clarke, Michel H. Devoret, and John M. Martinis. Credit: Niklas Elmehed/Nobel Prize Outreach

From subatomic to the macroscale

Clarke, Devoret, and Martinis were the first to demonstrate that quantum effects, such as quantum tunneling and energy quantization, can operate on macroscopic scales, not just one particle at a time.

After earning his PhD from University of Cambridge, Clarke came to the University of California, Berkeley, as a postdoc, eventually joining the faculty in 1969. By the mid-1980s, Devoret and Martinis had joined Clarke’s lab as a postdoc and graduate student, respectively. The trio decided to look for evidence of macroscopic quantum tunneling using a specialized circuit called a Josephson junction—a macroscopic device that takes advantage of a tunneling effect that is now widely used in quantum computing, quantum sensing, and cryptography.

A Josephson junction—named after British physicist Brian Josephson, who won the 1973 Nobel Prize in physics—is basically two semiconductor pieces separated by an insulating barrier. Despite this small gap between two conductors, electrons can still tunnel through the insulator and create a current. That occurs at sufficiently low temperatures, when the junction becomes superconducting as electrons form so-called “Cooper pairs.”

The team built an electrical circuit-based oscillator on a microchip measuring about one centimeter in size—essentially a quantum version of the classic pendulum. Their biggest challenge was figuring out how to reduce the noise in their experimental apparatus. For their experiments, they first fed a weak current into the junction and measured the voltage—initially zero. Then they increased the current and measured how long it took for the system to tunnel out of its enclosed state to produce a voltage.

Credit: Johan Jarnestad/The Royal Swedish Academy of Sciences

They took many measurements and found that the average current increased as the device’s temperature falls, as expected. But at some point, the temperature got so low that the device became superconducting and the average current became independent of the device’s temperature—a telltale signature of macroscopic quantum tunneling.

The team also demonstrated that the Josephson junction exhibited quantized energy levels—meaning the energy of the system was limited to only certain allowed values, just like subatomic particles can gain or lose energy only in fixed, discrete amounts—confirming the quantum nature of the system. Their discovery effectively revolutionized quantum science, since other scientists could now test precise quantum physics on silicon chips, among other applications.

Lasers, superconductors, and superfluid liquids exhibit quantum mechanical effects at the macroscale, but these arise by combining the behavior of microscopic components. Clarke, Devoret, and Martinis were able to create a macroscopic effect—a measurable voltage—from a macroscopic state. Their system contained billions of Cooper pairs filling the entire superconductor on the chip, yet all of them were described by a single wave function. They behave like a large-scale artificial atom.

In fact, their circuit was basically a rudimentary qubit. Martinis showed in a subsequent experiment that such a circuit could be an information-bearing unit, with the lowest energy state and the first step upward functioning as a 0 and a 1, respectively. This paved the way for such advances as the transmon in 2007: a superconducting charge qubit with reduced sensitivity to noise.

“That quantization of the energy levels is the source of all qubits,” said Irfan Siddiqi, chair of UC Berkeley’s Department of Physics and one of Devoret’s former postdocs. “This was the grandfather of qubits. Modern qubit circuits have more knobs and wires and things, but that’s just how to tune the levels, how to couple or entangle them. The basic idea that Josephson circuits could be quantized and were quantum was really shown in this experiment. The fact that you can see the quantum world in an electrical circuit in this very direct way was really the source of the prize.”

So perhaps it is not surprising that Martinis left academia in 2014 to join Google’s quantum computing efforts, helping to build a quantum computer the company claimed had achieved “quantum supremacy” in 2019. Martinis left in 2020 and co-founded a quantum computing startup, Qolab, in 2022. His fellow Nobel laureate, Devoret, now leads Google’s quantum computing division and is also a faculty member at the University of California, Santa Barbara. As for Clarke, he is now a professor emeritus at UC Berkeley.

“These systems bridge the gap between microscopic quantum behavior and macroscopic devices that form the basis for quantum engineering,” Gregory Quiroz, an expert in quantum information science and quantum algorithms at Johns Hopkins University, said in a statement. “The rapid progress in this field over the past few decades—in part fueled by their critical results—has allowed superconducting qubits to go from small-scale laboratory experiments to large-scale, multi-qubit devices capable of realizing quantum computation. While we are still on the hunt for undeniable quantum advantage, we would not be where we are today without many of their key contributions to the field.”

As is often the case with fundamental research, none of the three physicists realized at the time how significant their discovery would be in terms of its impact on quantum computing and other applications.

“This prize really demonstrates what the American system of science has done best,” Jonathan Bagger, CEO of the American Physical Society, told the New York Times. “It really showed the importance of the investment in research for which we do not yet have an application, because we know that sooner or later, there will be an application.”

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

2025 Nobel Prize in Physics awarded for macroscale quantum tunneling Read More »

natural-disasters-are-a-rising-burden-for-the-national-guard

Natural disasters are a rising burden for the National Guard


New Pentagon data show climate impacts shaping reservists’ mission.

National Guard soldiers search for people stranded by flooding in the aftermath of Hurricane Helene on September 27, 2024, in Steinhatchee, Florida. Credit: Sean Rayford/Getty Images

This article originally appeared on Inside Climate News, a nonprofit, non-partisan news organization that covers climate, energy, and the environment. Sign up for their newsletter here.

The National Guard logged more than 400,000 member service days per year over the past decade responding to hurricanes, wildfires, and other natural disasters, the Pentagon has revealed in a report to Congress.

The numbers mean that on any given day, 1,100 National Guard troops on average have been deployed on disaster response in the United States.

Congressional investigators believe this is the first public accounting by the Pentagon of the cumulative burden of natural disaster response on the nation’s military reservists.

The data reflect greater strain on the National Guard and show the potential stakes of the escalating conflict between states and President Donald Trump over use of the troops. Trump’s drive to deploy the National Guard in cities as an auxiliary law enforcement force—an effort curbed by a federal judge over the weekend—is playing out at a time when governors increasingly rely on reservists for disaster response.

In the legal battle over Trump’s efforts to deploy the National Guard in Portland, Oregon, that state’s attorney general, Dan Rayfield, argued in part that Democratic Gov. Tina Kotek needed to maintain control of the Guard in case they were needed to respond to wildfire—including a complex of fires now burning along the Rogue River in southwest Oregon.

The Trump administration, meanwhile, rejects the science showing that climate change is worsening natural disasters and has ceased Pentagon efforts to plan for such impacts or reduce its own carbon footprint.

The Department of Defense recently provided the natural disaster figures to four Democratic senators as part of a response to their query in March to Defense Secretary Pete Hegseth regarding planned cuts to the military’s climate programs. Sen. Elizabeth Warren of Massachusetts, who led the query on behalf of herself and three other members of the Senate Committee on Armed Services, shared the response with Inside Climate News.

“The effects of climate change are destroying the military’s infrastructure—Secretary Hegseth should take that threat seriously,” Warren told ICN in an email. “This data shows just how costly this threat already is for the National Guard to respond to natural disasters. Failing to act will only make these costs skyrocket.”

Neither the Department of Defense nor the White House immediately responded to a request for comment.

Last week, Hegseth doubled down on his vow to erase climate change from the military’s agenda. “No more climate change worship,” Hegseth exhorted, before an audience of senior officials he summoned to Marine Corps Base Quantico in Virginia on October 1. “No more division, distraction, or gender delusions. No more debris,” he said. Departing from the prepared text released by the Pentagon, he added, “As I’ve said before, and will say again, we are done with that shit.”

But the data released by the Pentagon suggest that the impacts of climate change are shaping the military’s duties, even if the department ceases acknowledging the science or planning for a warming future. In 2024, National Guard paid duty days on disaster response—445,306—had nearly tripled compared to nine years earlier, with significant fluctuations in between. (The Pentagon provided the figures in terms of “mandays,” or paid duty days over and above reservists’ required annual training days.)

Demand for reservist deployment on disaster assistance over those years peaked at 1.25 million duty days in 2017, when Hurricanes Harvey, Irma, and Maria unleashed havoc in Texas, Florida, and Puerto Rico.

The greatest deployment of National Guard members in response to wildfire over the past decade came in 2023, when wind-driven wildfires tore across Maui, leaving more than 100 people dead. Called into action by Gov. Josh Green, the Hawaii National Guard performed aerial water drops in CH-47 Chinook helicopters. On the ground, they helped escort fleeing residents, aided in search and recovery, distributed potable water, and performed other tasks.

Sen. Mazie Hirono of Hawaii, Sen. Richard Blumenthal of Connecticut, and Sen. Tammy Duckworth of Illinois joined Warren in seeking numbers on National Guard natural disaster deployment from the Pentagon.

It was not immediately possible to compare National Guard disaster deployment over the last decade to prior decades, since the Pentagon has not published a similar accounting for years prior to 2015.

But last year, a study by the Rand Corporation, a research firm, on stressors for the National Guard said that service leaders believed that natural disaster response missions were growing in scale and intensity.

“Seasons for these events are lasting longer, the extent of areas that are seeing these events is bigger, and the storms that occur are seemingly more intense and therefore more destructive,” noted the Rand study, produced for the Pentagon. “Because of the population density changes that have occurred, the devastation that can result and the population that can be affected are bigger as well.”

A history of the National Guard published by the Pentagon in 2001 describes the 1990s as a turning point for the service, marked by increasing domestic missions in part to “a nearly continuous string” of natural disasters.

One of those disasters was Hurricane Andrew, which ripped across southern Florida on August 23, 1992, causing more property damage than any storm in US history to that point. The crisis led to conflict between President George H.W. Bush’s administration and Florida’s Democratic governor, Lawton Chiles, over control of the National Guard and who should bear the blame for a lackluster initial response.

The National Guard, with 430,000 civilian soldiers, is a unique military branch that serves under both state and federal command. In Iraq and Afghanistan, for example, the president called on reservists to serve alongside the active-duty military. But state governors typically are commanders-in-chief for Guard units, calling on them in domestic crises, including natural disasters. The president only has limited legal authority to deploy the National Guard domestically, and such powers nearly always have been used in coordination with state governors.

But Trump has broken that norm and tested the boundaries of the law. In June, he deployed the National Guard for law and immigration enforcement in Los Angeles in defiance of Democratic Gov. Gavin Newsom. (Trump also deployed the Guard in Washington, DC, where members already are under the president’s command.) Over the weekend, Trump’s plans to deploy the Guard in Portland, Oregon, were put on hold by US District Judge Karin J. Immergut, a Trump appointee. She issued a second, broader stay on Sunday to block Trump from an attempt to deploy California National Guard members to Oregon. Nevertheless, the White House moved forward with an effort to deploy the Guard to Chicago in defiance of Illinois Gov. J.B. Pritzker, a Democrat. In that case, Trump is calling on Guard members from a politically friendly state, Texas, and a federal judge has rejected a bid by both the city of Chicago and the state of Illinois to block the move.

The conflicts could escalate should a natural disaster occur in a state where Trump has called the Guard into service on law enforcement, one expert noted.

“At the end of the day, it’s a political problem,” said Mark Nevitt, a professor at Emory University School of Law and a Navy veteran who specializes in the national security implications of climate change. “If, God forbid, there’s a massive wildfire in Oregon and there’s 2,000 National Guard men and women who are federalized, the governor would have to go hat-in-hand to President Trump” to get permission to redeploy the service members for disaster response, he said.

“The state and the federal government, most times it works—they are aligned,” Nevitt said. “But you can imagine a world where the president essentially refuses to give up the National Guard because he feels as though the crime-fighting mission has primacy over whatever other mission the governor wants.”

That scenario may already be unfolding in Oregon. On September 27, the same day that Trump announced his intent to send the National Guard into Portland, Kotek was mobilizing state resources to fight the Moon Complex Fire on the Rogue River, which had tripled in size due to dry winds. That fire is now 20,000 acres and only 10 percent contained. Pointing to that fire, Oregon Attorney General Rayfield told the court the Guard should remain ready to respond if needed, noting the role reservists played in responding to major Oregon fires in 2017 and 2020.

“Wildfire response is one of the most significant functions the Oregon National Guard performs in the State,” Rayfield argued in a court filing Sunday.

Although Oregon won a temporary stay, the Trump administration is appealing that order. And given the increasing role of the National Guard in natural disaster response, according to the Pentagon’s figures, the legal battle will have implications far beyond Portland. It will determine whether governors like Kotek will be forced to negotiate with Trump for control of the National Guard amid a crisis that his administration is seeking to downplay.

Photo of Inside Climate News

Natural disasters are a rising burden for the National Guard Read More »