science and art

cats-playing-with-robots-proves-a-winning-combo-in-novel-art-installation

Cats playing with robots proves a winning combo in novel art installation

The feline factor —

Cat Royale project explores what it takes to trust a robot to look after beloved pets.

Cat with the robot arm in the Cat Royale installation

Enlarge / A kitty named Clover prepares to play with a robot arm in the Cat Royale “multi-species” science/art installation .

Blast Theory – Stephen Daly

Cats and robots are a winning combination, as evidenced by all those videos of kitties riding on Roombas. And now we have Cat Royale, a “multispecies” live installation in which three cats regularly “played” with a robot over 12 days, carefully monitored by human operators. Created by computer scientists from the University of Nottingham in collaboration with artists from a group called Blast Theory, the installation debuted at the World Science Festival in Brisbane, Australia, last year and is now a touring exhibit. The accompanying YouTube video series recently won a Webby Award, and a paper outlining the insights gleaned from the experience was similarly voted best paper at the recent Computer-Human Conference (CHI’24).

“At first glance, the project is about designing a robot to enrich the lives of a family of cats by playing with them,” said co-author Steve Benford of the University of Nottingham, who led the research, “Under the surface, however, it explores the question of what it takes to trust a robot to look after our loved ones and potentially ourselves.” While cats might love Roombas, not all animal encounters with robots are positive: Guide dogs for the visually impaired can get confused by delivery robots, for example, while the rise of lawn mowing robots can have a negative impact on hedgehogs, per Benford et al.

Blast Theory and the scientists first held a series of exploratory workshops to ensure the installation and robotic design would take into account the welfare of the cats. “Creating a multispecies system—where cats, robots, and humans are all accounted for—takes more than just designing the robot,” said co-author Eike Schneiders of Nottingham’s Mixed Reality Lab about the primary takeaway from the project. “We had to ensure animal well-being at all times, while simultaneously ensuring that the interactive installation engaged the (human) audiences around the world. This involved consideration of many elements, including the design of the enclosure, the robot, and its underlying systems, the various roles of the humans-in-the-loop, and, of course, the selection of the cats.”

Based on those discussions, the team set about building the installation: a bespoke enclosure that would be inhabited by three cats for six hours a day over 12 days. The lucky cats were named Ghostbuster, Clover, and Pumpkin—a parent and two offspring to ensure the cats were familiar with each other and comfortable sharing the enclosure. The enclosure was tricked out to essentially be a “utopia for cats,” per the authors, with perches, walkways, dens, a scratching post, a water fountain, several feeding stations, a ball run, and litter boxes tucked away in secluded corners.

(l-r) Clover, Pumpkin, and Ghostbuster spent six hours a day for 12 days in the installation.

Enlarge / (l-r) Clover, Pumpkin, and Ghostbuster spent six hours a day for 12 days in the installation.

E. Schneiders et al., 2024

As for the robot, the team chose the Kino Gen3 lite robot arm, and the associated software was trained on over 7,000 videos of cats. A decision engine gave the robot autonomy and proposed activities for specific cats. Then a human operator used an interface control system to instruct the robot to execute the movements. The robotic arm’s two-finger gripper was augmented with custom 3D-printed attachments so that the robot could manipulate various cat toys and accessories.

Each cat/robot interaction was evaluated for a “happiness score” based on the cat’s level of engagement, body language, and so forth. Eight cameras monitored the cat and robot activities, and that footage was subsequently remixed and edited into daily YouTube highlight videos and, eventually, an eight-hour film.

Cats playing with robots proves a winning combo in novel art installation Read More »

marbled-paper,-frosty-fireworks-among-2023-gallery-of-fluid-motion-winners

Marbled paper, frosty fireworks among 2023 Gallery of Fluid Motion winners

Harvard University graduate student Yue Sun won a Milton Van Dyke Award for her video on the hydrodynamics of marbled paper.

Enlarge / Harvard University graduate student Yue Sun won a Milton Van Dyke Award for her video on the hydrodynamics of marbled paper.

Y. Sun/Harvard University et al.

Marbled paper is an art form that dates back at least to the 17th century, when European travelers to the Middle East brought back samples and bound them into albums. Its visually striking patterns arise from the complex hydrodynamics of paint interacting with water, inspiring a winning video entry in this year’s Gallery of Fluid Motion.

The American Physical Society’s Division of Fluid Dynamics sponsors the gallery each year as part of its annual meeting, featuring videos and posters submitted by scientists from all over the world. The objective is to highlight “the captivating science and often breathtaking beauty of fluid motion” and to “celebrate and appreciate the remarkable fluid dynamics phenomena unveiled by researchers and physicists.”

The three videos featured here are the winners of the Milton Van Dyke Awards, which also included three winning posters. There were three additional general video winners—on the atomization of impinging jets, the emergent collective motion of condensate droplets, and the swimming motion of a robotic eel—as well as three poster winners. You can view all the 2023 entries (winning and otherwise) here.

The hydrodynamics of marbling art

Harvard University graduate student Yue Sun was fascinated by the process and the resulting patterns of making marbled paper, particularly the randomness. “You don’t really know what you’re going to end up with until you have it printed,” she told Physics Magazine.

Although there are several different methods for marbling paper, the most common involves filling a shallow tray with water, then painstakingly applying different ink or paint colors to the water’s surface with an ink brush to cover the surface with concentric circles. Adding surfactants makes the colors float so that they can be stirred—perhaps with a very fine human hair—or fanned out by blowing on the circles of ink or paint with a straw. The final step is to lay paper on top to capture the colorful floating patterns. (Body marbling relies on a similar process, except the floating patterns are transferred onto a person’s skin.)

Sun was curious about the hydrodynamics at play and explored two key questions in the simulations for the video. Why does the paint or ink float despite being denser than the liquid bath? And why don’t the colors mix together to create new colors when agitated or stirred? The answer to the former is basically “surface tension,” while the latter does not occur because the bath is too viscous, so the diffusion of the paint or ink colors across color boundaries happens too slowly for mixing. Sun hopes to further improve her simulations of marbling in hopes of reverse-engineering some of her favorite patterns to determine which tools and movements were used to create them.

Marbled paper, frosty fireworks among 2023 Gallery of Fluid Motion winners Read More »