RNA

dna-based-bacterial-parasite-uses-completely-new-dna-editing-method

DNA-based bacterial parasite uses completely new DNA-editing method

Top row: individual steps in the reaction process. Bottom row: cartoon diagram of the top, showing the position of each DNA and RNA strand.

Enlarge / Top row: individual steps in the reaction process. Bottom row: cartoon diagram of the top, showing the position of each DNA and RNA strand.

Hiraizumi, et. al.

While CRISPR is probably the most prominent gene-editing technology, there are a variety of others, some developed before, others since. And people have been developing CRISPR variants to perform more specialized functions, like altering specific bases. In all of these cases, researchers are trying to balance a number of competing factors: convenience; flexibility; specificity and precision for the editing; low error rates; and so on.

So, having additional options for editing can be a good thing, enabling new ways of balancing those different needs. On Wednesday, a pair of papers in Nature describe a DNA-based parasite that moves itself around bacterial genomes through a mechanism that hasn’t been previously described. It’s nowhere near ready for use in humans, but it may have some distinctive features that make it worth further development.

Going mobile

Mobile genetic elements, commonly called transposons, are quite common in many species—they make up nearly half the sequences in the human genome, for example. They are indeed mobile, showing up in new locations throughout the genome, sometimes by cutting themselves out and hopping to new locations, other times by sending a copy out to a new place in the genome. For any of this to work, they need to have an enzyme that cuts DNA and specifically recognizes the right transposon sequence to insert into the cut.

The specificity of that interaction, needed to ensure the system only inserts new copies of itself, and the cutting of DNA, are features we’d like for gene editing, which places a value on better understanding these systems.

Bacterial genomes tend to have very few transposons—the extra DNA isn’t really in keeping with the bacterial reproduction approach of “copy all the DNA as quickly as possible when there’s food around.” Yet bacterial transposons do exist, and a team of scientists based in the US and Japan identified one with a rather unusual feature. As an intermediate step in moving to a new location, the two ends of the transposon (called IS110) are linked together to form a circular piece of DNA.

In its circular form, the DNA sequences at the junction act as a signal that tells the cell to make an RNA copy of nearby DNA (termed a “promoter”). When linear, each of the two bits of DNA on either side of the junction lacks the ability to act as a signal; it only works when the transposon is circular. And the researchers confirmed that there is in fact an RNA produced by the circular form, although the RNA does not encode for any proteins.

So, the research team looked at over 100 different relatives of IS110 and found that they could all produce similar non-protein-coding RNAs, all of which shared some key features. These included stretches where nearby sections of the RNA could base-pair with each other, leaving an unpaired loop of RNA in between. Two of these loops contained sequences that either base-paired with the transposon itself or at the sites in the E. coli genome where it inserted.

That suggests that the RNA produced by the circular form of the transposon helped to act as a guide, ensuring that the transposon’s DNA was specifically used and only inserted into precise locations in the genome.

Editing without precision

To confirm this was right, the researchers developed a system where the transposon would produce a fluorescent protein when it was properly inserted into the genome. They used this to show that mutations in the loop that recognized the transposon would stop it from being inserted into the genome—and that it was possible to direct it to new locations in the genome by changing the recognition sequences in the second loop.

To show this was potentially useful for gene editing, the researchers blocked the production of the transposon’s own RNA and fed it a replacement RNA that worked. So, you could potentially use this system to insert arbitrary DNA sequences into arbitrary locations in a genome. It could also be used with targeting RNAs that caused specific DNA sequences to be deleted. All of this is potentially very useful for gene editing.

Emphasis on “potentially.” The problem is that the targeting sequences in the loops are quite short, with the insertion site targeted by a recognition sequence that’s only four to seven bases long. At the short end of this range, you’d expect that a random string of bases would have an insertion site about once every 250 bases.

That relatively low specificity showed. At the high end, various experiments could see an insertion accuracy ranging from a close-to-being-useful 94 percent down to a positively threatening 50 percent. For deletion experiments, the low end of the range was a catastrophic 32 percent accuracy. So, while this has some features of an interesting gene-editing system, there’s a lot of work to do before it could fulfill that potential. It’s possible that these recognition loops could be made longer to add the sort of specificity that would be needed for editing vertebrate genomes, but we simply don’t know at this point.

DNA-based bacterial parasite uses completely new DNA-editing method Read More »

mutations-in-a-non-coding-gene-associated-with-intellectual-disability

Mutations in a non-coding gene associated with intellectual disability

Splice of life —

A gene that only makes an RNA is linked to neurodevelopmental problems.

Colored ribbons that represent the molecular structure of a large collection of proteins and RNAs.

Enlarge / The spliceosome is a large complex of proteins and RNAs.

Almost 1,500 genes have been implicated in intellectual disabilities; yet for most people with such disabilities, genetic causes remain unknown. Perhaps this is in part because geneticists have been focusing on the wrong stretches of DNA when they go searching. To rectify this, Ernest Turro—a biostatistician who focuses on genetics, genomics, and molecular diagnostics—used whole genome sequencing data from the 100,000 Genomes Project to search for areas associated with intellectual disabilities.

His lab found a genetic association that is the most common one yet to be associated with neurodevelopmental abnormality. And the gene they identified doesn’t even make a protein.

Trouble with the spliceosome

Most genes include instructions for how to make proteins. That’s true. And yet human genes are not arranged linearly—or rather, they are arranged linearly, but not contiguously. A gene containing the instructions for which amino acids to string together to make a particular protein—hemoglobin, insulin, serotonin, albumin, estrogen, whatever protein you like—is modular. It contains part of the amino acid sequence, then it has a chunk of DNA that is largely irrelevant to that sequence, then a bit more of the protein’s sequence, then another chunk of random DNA, back and forth until the end of the protein. It’s as if each of these prose paragraphs were separated by a string of unrelated letters (but not a meaningful paragraph from a different article).

In order to read this piece through coherently, you’d have to take out the letters interspersed between its paragraphs. And that’s exactly what happens with genes. In order to read the gene through coherently, the cell has machinery that splices out the intervening sequences and links up the protein-making instructions into a continuous whole. (This doesn’t happen in the DNA itself; it happens to an RNA copy of the gene.) The cell’s machinery is obviously called the spliceosome.

There are about a hundred proteins that comprise the spliceosome. But the gene just found to be so strongly associated with neurodevelopmental disorders doesn’t encode any of them. Rather, it encodes one of five RNA molecules that are also part of the spliceosome complex and interact with the RNAs that are being spliced. Mutations in this gene were found to be associated with a syndrome with symptoms that include intellectual disability, seizures, short stature, neurodevelopmental delay, drooling, motor delay, hypotonia (low muscle tone), and microcephaly (having a small head).

Supporting data

The researchers buttressed their finding by examining three other databases; in all of them, they found more people with the syndrome who had mutations in this same gene. The mutations occur in a remarkably conserved region of the genome, suggesting that it is very important. Most of the mutations were new in the affected people—i.e. not inherited from their parents—but there was one case of one particular mutation in the gene that was inherited. Based on this, the researchers concluded that this particular variant may cause a less severe disorder than the other mutations.

Many studies that look for genes associated with diseases have focused on searching catalogs of protein coding genes. These results suggest that we could have been missing important mutations because of this focus.

Nature Medicine, 2024. DOI: 10.1038/s41591-024-03085-5

Mutations in a non-coding gene associated with intellectual disability Read More »