NASA

axiom-and-spacex-are-disrupting-europe’s-traditional-pathway-to-space

Axiom and SpaceX are disrupting Europe’s traditional pathway to space

Image of a rocket clearing the tower during liftoff.

Enlarge / A Falcon 9 rocket launches the Axiom-2 mission on May 21, 2023.

SpaceX

The European Space Agency’s (ESA) has a deal with Axiom Space to get more Europeans in orbit. But does the partnership benefit European taxpayers who fund the agency’s operations?

On Wednesday, January 17, the third privately funded mission by US commercial spaceflight company Axiom Space is set to lift off from Kennedy Space Center in Florida on SpaceX’s Falcon 9 rocket. Inside the Crew Dragon capsule will be a quartet of space travelers, including Swedish fighter pilot Marcus Wandt.

Wandt will be flying under the European Space Agency (ESA) flag, although he is not exactly an ESA astronaut. In the 2022 European astronaut recruitment round, Wandt didn’t make the final five of Europe’s “proper” astronaut class, who became ESA staff members and started their astronaut training in 2023. Instead, he was selected as a member of ESA’s first astronaut reserve pool, a novelty developed by ESA with an apparent goal of encouraging its member states to pay for national missions in addition to their regular contributions to ESA’s budget. Sweden was the first to jump at the opportunity in April last year and is paying for Wandt’s two-week space trip through a contract brokered by ESA as part of a Memorandum of Understanding the agency signed with the American commercial company Axiom Space in October 2023.

Ticket to ride

Wandt is the first but not the only reserve astronaut with his ticket to space while his seemingly more successful colleagues who made the proper astronaut corps are still in training. Poland, too, has signed up and expects to fly its reservist, Sławosz Uznański, on another Axiom mission later this year.

Compared to their overall investment in space activities, the price these countries pay to see their nationals float in microgravity is not negligible. At the November 2022 ESA ministerial council—the triennial member state summit that decides the agency’s budget for the following three-year period—Sweden pledged 317 million euros ($355 million).

According to a 2018 announcement, Axiom Space sells 10-day space trips for $55 million a seat. The overall cost of each mission is likely to be quite a bit higher. Last year, Hungary signed a contract directly with Axiom to send a Hungarian national to the International Space Station independently of ESA. Hungary discussed plans for a national mission back in 2022 and, at that time, estimated the project to cost about $100 million. Based on that estimate, Sweden may be easily paying an equivalent of its annual contribution into the ESA budget to get Wandt to space.

In addition to Wandt and Uznański, the ESA astronaut reserve pool includes nine other candidates, none of them officially employed by ESA. By filling this astronaut reserve pool, ESA seems to have created a market for Axiom Space, a move that might raise questions given the agency’s purpose is to promote the European space sector. In fact, the ESA’s founding Convention enshrines the principle of geo-return, which grants member states at least an 80 percent return on their contributions into ESA’s budget in the form of research and development contracts. Although the cost of the Axiom missions is paid through ESA, most of this money goes to the Texas-headquartered Axiom Space and its launch provider, SpaceX.

Secret contracts

ESA refused to disclose details of the arrangement between Axiom Space and Sweden, calling it “proprietary data as this is implemented through a confidential commercial contract.” The Swedish National Space Agency didn’t respond to Ars Technica’s request for comment.

Poland’s announcement of a national mission for Uznański arrived in August last year, accompanied by a jaw-dropping increase of the country’s contribution to ESA’s budget. At the 2022 ministerial council, Poland earmarked 197 million euros for the agency’s activities in the 2023 to 2025 period. In August, the Polish Space Agency more than doubled this contribution, committing an additional 295 million euros ($322 million). It is not clear how much of this money will go toward Uznański’s space trip.

In the months following the announcement of the astronaut reserve pool, Axiom Space began actively approaching home countries of the reservists with offers to fly those men and women to space, according to media in the Czech Republic, which has recently declined the offer.

In addition to Sweden and Poland, the UK also intends to use Axiom’s services and conduct a British-only mission that will be headed by semi-retired ESA astronaut Tim Peake. It will also include the UK’s Rosemary Coogan, newly named as one of ESA’s career astronauts, as well as reservist Meganne Christian and para-astronaut John McFall. Unlike the Swedish and Polish mission, the British mission will be funded by the private industry in the UK rather than by taxpayers, according to the BBC.

Axiom and SpaceX are disrupting Europe’s traditional pathway to space Read More »

nasa-scientist-on-2023-temperatures:-“we’re-frankly-astonished”

NASA scientist on 2023 temperatures: “We’re frankly astonished”

Extremely unusual —

NASA, NOAA, and Berkeley Earth have released their takes on 2023’s record heat.

A global projection map with warm areas shown in read, and color ones in blue. There is almost no blue.

Enlarge / Warming in 2023 was widespread.

Earlier this week, the European Union’s Earth science team came out with its analysis of 2023’s global temperatures, finding it was the warmest year on record to date. In an era of global warming, that’s not especially surprising. What was unusual was how 2023 set its record—every month from June on coming in far above any equivalent month in the past—and the size of the gap between 2023 and any previous year on record.

The Copernicus dataset used for that analysis isn’t the only one of the sort, and on Friday, Berkeley Earth, NASA, and the National Oceanic and Atmospheric Administration all released equivalent reports. And all of them largely agree with the EU’s: 2023 was a record, and an unusual one at that. So unusual that NASA’s chief climate scientist, Gavin Schmidt, introduced his look at 2023 by saying, “We’re frankly astonished.”

Despite the overlaps with the earlier analysis, each of the three new ones adds some details that flesh out what made last year so unusual.

Each of the three analyses uses slightly different methods to do things like fill in areas of the globe where records are sparse, and uses a different baseline. Berkeley Earth was the only team to do a comparison with pre-industrial temperatures, using a baseline of the 1850–1900 temperatures. Its analysis suggests that this is the first year to finish over 1.5° C above preindustrial temperatures.

Most countries have committed to an attempt to keep temperatures from consistently coming in above that point. So, at one year, we’re far from consistently failing our goals. But there’s every reason to expect that we’re going to see several more years exceeding this point before the decade is out. And that clearly means we have a very short timeframe before we get carbon emissions to drop, or we’ll commit to facing a difficult struggle to get temperatures back under this threshold by the end of the century.

Berkeley Earth also noted that the warming was extremely widespread. It estimates that nearly a third of the Earth’s population lived in a region that set a local heat record. And 77 nations saw 2023 set a national record.

Lots of factors converged on warming in 2023.

Enlarge / Lots of factors converged on warming in 2023.

The Berkeley team also had a nice graph laying out the influences of different factors on recent warming. Greenhouse gases are obviously the strongest and most consistent factor, but there are weaker short-term influences as well, such as the El Niño/La Niña oscillation and the solar cycle. Berkeley Earth and EU’s Copernicus also noted that an international agreement caused sulfur emissions from shipping to drop by about 85 percent in 2020, which would reduce the amount of sunlight scattered back out into space. Finally, like the EU team, they note the Hunga Tonga eruption.

An El Niño unlike any other

A shift from La Niño to El Niño conditions in the late spring is highlighted by everyone looking at this year, as El Niños tend to drive global temperatures upward. While it has the potential to develop into a strong El Niño in 2024, at the moment, it’s pretty mild. So why are we seeing record temperatures?

We’re not entirely sure. “The El Niño we’ve seen is not an exceptional one,” said NASA’s Schmidt. So, he reasoned, “Either this El Niño is different from all of them… or there are other factors going on.” But he was at a bit of a loss to identify the factors. He said that typically, there are a limited number of stories that you keep choosing from in order to explain a given year’s behavior. But, for 2023, none of them really fit.

Something very ominous happened to the North Atlantic last year.

Enlarge / Something very ominous happened to the North Atlantic last year.

Berkeley Earth had a great example of it in its graph of North Atlantic sea surface temperatures, which have been rising slowly for decades, until 2023 saw record temperatures with a freakishly large gap compared to anything previously on record. There’s nothing especially obvious to explain that.

Lurking in the background of all of this is climate scientist James Hansen’s argument that we’re about to enter a new regime of global warming, where temperatures increase at a much faster pace than they have until now. Most climate scientists don’t see compelling evidence for that yet. And, with El Niño conditions likely to prevail for much of 2024, we can expect a very hot year again, regardless of changing trends. So, it may take several more years to determine if 2023 was a one-off freak or a sign of new trends.

NASA scientist on 2023 temperatures: “We’re frankly astonished” Read More »

a-cat-video-highlighted-a-big-year-for-lasers-in-space

A cat video highlighted a big year for lasers in space

Pew Pew —

NASA has invested more than $700 million in testing laser communications in space.

Taters, the orange tabby cat of a Jet Propulsion Laboratory employee, stars in a video beamed from deep space by NASA's Psyche spacecraft. The graphics illustrate several features from the tech demo, such as Psyche’s orbital path, Palomar’s telescope dome, and technical information about the laser and its data bit rate. Tater’s heart rate, color, and breed are also on display.

Enlarge / Taters, the orange tabby cat of a Jet Propulsion Laboratory employee, stars in a video beamed from deep space by NASA’s Psyche spacecraft. The graphics illustrate several features from the tech demo, such as Psyche’s orbital path, Palomar’s telescope dome, and technical information about the laser and its data bit rate. Tater’s heart rate, color, and breed are also on display.

It’s been quite a year for laser communications in space. In October and November, NASA launched two pioneering demonstrations to test high-bandwidth optical communication links, and these tech demos are now showing some initial results.

On December 11, a laser communications terminal aboard NASA’s Psyche spacecraft on the way to an asteroid linked up with a receiver in Southern California. The near-infrared laser beam contained an encoded message in the form of a 15-second ultra-high-definition video showing a cat bouncing around a sofa, chasing the light of a store-bought laser toy.

Laser communications offer the benefit of transmitting data at a higher rate than achievable with conventional radio links. In fact, the Deep Space Optical Communications (DSOC) experiment on the Psyche spacecraft is testing technologies capable of sending data at rates 10 to 100 times greater than possible on prior missions.

“We’re looking to increase the amount of data we can get down to Earth, and that has a lot of advantages to us,” said Jeff Volosin, acting deputy associate administrator for NASA space communications and navigation program, before the launch of Psyche earlier this year.

Now, DSOC has set a record for the farthest distance a high-definition video has streamed from space. At the time, Psyche was traveling 19 million miles (31 kilometers) from Earth, about 80 times the distance between Earth and the Moon. Traveling at the speed of light, the video signal took 101 seconds to reach Earth, sent at the system’s maximum bit rate of 267 megabits per second, NASA said.

A playful experiment

After reaching the receiver at Palomar Observatory in San Diego County, each video frame was transmitted “live” to NASA’s Jet Propulsion Laboratory in Pasadena, California, where it was played in real time, according to NASA.

“One of the goals is to demonstrate the ability to transmit broadband video across millions of miles. Nothing on Psyche generates video data, so we usually send packets of randomly generated test data,” said Bill Klipstein, the tech demo’s project manager at JPL, in a statement. “But to make this significant event more memorable, we decided to work with designers at JPL to create a fun video, which captures the essence of the demo as part of the Psyche mission.”

The video of Taters, the orange tabby cat of a JPL employee, was recorded before the launch of Psyche and stored on the spacecraft for this demonstration. The robotic probe launched on October 13 aboard a SpaceX Falcon Heavy rocket, with the primary goal of flying to the asteroid Psyche, a metal-rich world in the asteroid belt between the orbits of Mars and Jupiter.

It will take six years for the Psyche probe to reach its destination, and NASA tacked on a laser communications experiment to help keep the spacecraft busy during the cruise. Since the launch in October, ground teams at JPL switched on the Deep Space Optical Communications (DSOC) experiment and ran it through some early tests.

One of the most significant technical challenges involved in the DSOC experiment was aligning the 8.6-inch (22-centimeter) optical telescope aboard Psyche with a transmitter and receiver fitted to ground-based telescopes in California and vice versa. Because Psyche is speeding through deep space, this problem is akin to trying to hit a dime from a mile away while the dime is moving, according to Abi Biswas, DSOC’s project technologist at JPL.

Once you achieve that feat, the signal that is received is still very weak and therefore requires very sensitive detectors and processing electronics which can take that signal and extract information that’s encoded in it,” Biswas said.

The telescope aboard Psyche is mounted on an isolation-and-pointing assembly to stabilize the optics and isolate them from spacecraft vibrations, according to NASA. This is necessary to eliminate jitters that could prevent a stable laser lock between Earth and the Psyche spacecraft.

“What optical or laser communications allows you is to achieve very high data rates, but on the downside, it’s a very narrow laser beam that requires very accurate pointing control,” Biswas told reporters before the launch. “For example, the platform disturbance from a typical spacecraft would throw off the pointing, so you need to actively isolate from it or control against it.

“For near-Earth missions, you can just control against it because you have enough control bandwidth,” he said. “From deep space, where the signals received are very weak, you don’t have that much control bandwidth, so you have to isolate from the disturbance.”

The Deep Space Optical Communications (DSOC) experiment is mounted on NASA's Psyche spacecraft on the way to an asteroid. The inset image shows the mirror of the instrument's telescope for receiving and transmitting laser signals.

Enlarge / The Deep Space Optical Communications (DSOC) experiment is mounted on NASA’s Psyche spacecraft on the way to an asteroid. The inset image shows the mirror of the instrument’s telescope for receiving and transmitting laser signals.

There’s another drawback of direct-to-Earth laser communications from space. Cloud cover over transmitting and receiving telescopes on Earth could block signals, so an operational optical communications network will require several ground nodes at different locations worldwide, ideally positioned in areas known for clear skies.

A cat video highlighted a big year for lasers in space Read More »

hubble-back-in-service-after-gyro-scare—nasa-still-studying-reboost-options

Hubble back in service after gyro scare—NASA still studying reboost options

The Hubble Space Telescope viewed from Space Shuttle Atlantis during a servicing mission in 2009.

Enlarge / The Hubble Space Telescope viewed from Space Shuttle Atlantis during a servicing mission in 2009.

NASA

The Hubble Space Telescope resumed science observations on Friday after ground teams spent most of the last three weeks assessing the performance of a finicky gyroscope, NASA said.

The troublesome gyroscope is a critical part of the observatory’s pointing system. Hubble’s gyros measure how fast the spacecraft is turning, helping the telescope aim its aperture toward distant cosmic wonders.

Hubble still provides valuable scientific data for astronomers nearly 34 years since its launch aboard NASA’s Space Shuttle Discovery in 1990. Five more shuttle servicing missions repaired Hubble, upgraded its science instruments, and replaced hardware degraded from long-term use in space. Among other tasks, astronauts on the last of the shuttle repair flights in 2009 installed six new gyroscopes on Hubble.

Moving parts sometimes break

The gyros have long been one of the parts of Hubble that require the most upkeep. A wheel inside each gyro spins at a constant rate of 19,200 revolutions per minute, and the wheel is, in turn, sealed inside a cylinder suspended in a thick fluid, according to NASA. Electronics within each gyro detect very small movements of the axis of the wheel, which supply Hubble’s central computer with information about the spacecraft’s turn rate. Hair-thin wires route signals from the gyroscopes, and these wires can degrade over time.

Three of the six gyros installed on Hubble in 2009 have failed, and three others remain operational. The three still-functioning gyros are based on a newer design for longer life, but one of these units has shown signs of wear in the last few months. This gyroscope, designated Gyro 3, has always exhibited “consistent noisy behavior,” said Pat Crouse, Hubble project manager at NASA’s Goddard Space Flight Center.

Hubble typically needs three gyros to operate normally, so ground controllers shut down Gyro 3 for roughly seven years until Hubble needed it in 2018, when another gyroscope failed, leaving only three of the devices still working.

“Back in August, we saw issues,” Crouse told Ars this week. “It would sort of sporadically output some rate information that was not consistent with the observed spacecraft body rates, but it was short-lived, and we were characterizing what that performance was like and how much we could tolerate.”

The gyro’s performance worsened in November when it fed Hubble’s control system erroneous data. The gyroscope sensed that the spacecraft was changing its orientation when it really wasn’t moving. “That, then, contributed to an error in attitude that was kind of causing a little bit of drift,” Crouse said.

Automated software on Hubble detected the errors and put the spacecraft into “safe mode” two times last month. Hubble quickly resumed science observations each time but then went into safe mode again on November 23. Hubble managers took some extra time to gather data on the gyro’s health. Engineers commanded Hubble to move back and forth, and the suspect gyro consistently seemed to work well.

Hubble back in service after gyro scare—NASA still studying reboost options Read More »