mathematics

why-solving-crosswords-is-like-a-phase-transition

Why solving crosswords is like a phase transition

There’s also the more recent concept of “explosive percolation,” whereby connectivity emerges not in a slow, continuous process but quite suddenly, simply by replacing the random node connections with predetermined criteria—say, choosing to connect whichever pair of nodes has the fewest pre-existing connections to other nodes. This introduces bias into the system and suppresses the growth of large dominant clusters. Instead, many large unconnected clusters grow until the critical threshold is reached. At that point, even adding just one or two more connections will trigger one global violent merger (instant uber-connectivity).

Puzzling over percolation

One might not immediately think of crossword puzzles as a network, although there have been a couple of relevant prior mathematical studies. For instance, John McSweeney of the Rose-Hulman Institute of Technology in Indiana employed a random graph network model for crossword puzzles in 2016. He factored in how a puzzle’s solvability is affected by the interactions between the structure of the puzzle’s cells (squares) and word difficulty, i.e., the fraction of letters you need to know in a given word in order to figure out what it is.

Answers represented nodes while answer crossings represented edges, and McSweeney assigned a random distribution of word difficulty levels to the clues. “This randomness in the clue difficulties is ultimately responsible for the wide variability in the solvability of a puzzle, which many solvers know well—a solver, presented with two puzzles of ostensibly equal difficulty, may solve one readily and be stumped by the other,” he wrote at the time. At some point, there has to be a phase transition, in which solving the easiest words enables the puzzler to solve the more difficult words until the critical threshold is reached and the puzzler can fill in many solutions in rapid succession—a dynamic process that resembles, say, the spread of diseases in social groups.

In this sample realization, sites with black sites are shown in black; empty sites are white; and occupied sites contain symbols and letters.

In this sample realization, black sites are shown in black; empty sites are white; and occupied sites contain symbols and letters. Credit: Alexander K. Hartmann, 2024

Hartmann’s new model incorporates elements of several nonstandard percolation models, including how much the solver benefits from partial knowledge of the answers. Letters correspond to sites (white squares) while words are segments of those sites, bordered by black squares. There is an a priori probability of being able to solve a given word if no letters are known. If some words are solved, the puzzler gains partial knowledge of neighboring unsolved words, which increases the probability of those words being solved as well.

Why solving crosswords is like a phase transition Read More »

delve-into-the-physics-of-the-hula-hoop

Delve into the physics of the Hula-Hoop

High-speed video of experiments on a robotic hula hooper, whose hourglass form holds the hoop up and in place.

Some version of the Hula-Hoop has been around for millennia, but the popular plastic version was introduced by Wham-O in the 1950s and quickly became a fad. Now, researchers have taken a closer look at the underlying physics of the toy, revealing that certain body types are better at keeping the spinning hoops elevated than others, according to a new paper published in the Proceedings of the National Academy of Sciences.

“We were surprised that an activity as popular, fun, and healthy as hula hooping wasn’t understood even at a basic physics level,” said co-author Leif Ristroph of New York University. “As we made progress on the research, we realized that the math and physics involved are very subtle, and the knowledge gained could be useful in inspiring engineering innovations, harvesting energy from vibrations, and improving in robotic positioners and movers used in industrial processing and manufacturing.”

Ristroph’s lab frequently addresses these kinds of colorful real-world puzzles. For instance, in 2018, Ristroph and colleagues fine-tuned the recipe for the perfect bubble based on experiments with soapy thin films. In 2021, the Ristroph lab looked into the formation processes underlying so-called “stone forests” common in certain regions of China and Madagascar.

In 2021, his lab built a working Tesla valve, in accordance with the inventor’s design, and measured the flow of water through the valve in both directions at various pressures. They found the water flowed about two times slower in the nonpreferred direction. In 2022, Ristroph studied the surpassingly complex aerodynamics of what makes a good paper airplane—specifically, what is needed for smooth gliding.

Girl twirling a Hula hoop, 1958

Girl twirling a Hula-Hoop in 1958 Credit: George Garrigues/CC BY-SA 3.0

And last year, Ristroph’s lab cracked the conundrum of physicist Richard Feynman’s “reverse sprinkler” problem, concluding that the reverse sprinkler rotates a good 50 times slower than a regular sprinkler but operates along similar mechanisms. The secret is hidden inside the sprinkler, where there are jets that make it act like an inside-out rocket. The internal jets don’t collide head-on; rather, as water flows around the bends in the sprinkler arms, it is slung outward by centrifugal force, leading to asymmetric flow.

Delve into the physics of the Hula-Hoop Read More »