juno

io:-new-image-of-a-lake-of-fire,-signs-of-permanent-volcanism

Io: New image of a lake of fire, signs of permanent volcanism

Io: New image of a lake of fire, signs of permanent volcanism

Ever since the Voyager mission sent home images of Jupiter’s moon Io spewing material into space, we’ve gradually built up a clearer picture of Io’s volcanic activity. It slowly became clear that Io, which is a bit smaller than Mercury, is the most volcanically active body in the Solar System, with all that activity driven by the gravitational strain caused by Jupiter and its three other giant moons. There is so much volcanism that its surface has been completely remodeled, with no signs of impact craters.

A few more details about its violence came to light this week, with new images being released of the moon’s features, including an island in a lake of lava, taken by the Juno orbiter. At the same time, imaging done using an Earth-based telescope has provided some indications that this volcanism has been reshaping Io from almost the moment it formed.

Fiery, glassy lakes

The Juno orbiter’s mission is primarily focused on studying Jupiter, including the dynamics of its storms and its internal composition. But many of its orbital passes have taken it right past Io, and this week, the Jet Propulsion Laboratory released some of the best images from these flybys. They include a shot of Loki Patera, a lake of lava that has an island within it. Also featured: the impossibly sheer slopes of Io’s Steeple Mountain.

Looking more closely at the lake, the Juno team found that some of the areas within it were incredibly smooth, raising the possibility that obsidian glass had formed on the surface where it had cooled enough to solidify. Given the level of volcanism on Io, this may be more widespread than the Loki Patera.

Volcanic ash would also create a relatively smooth surface, and is likely to be even more common, but it would have significantly different reflective properties.

How long has this been going on?

But we don’t have to send hardware to Jupiter to learn something about Io. A US-based team got time on the Atacama Large Millimeter Array (ALMA) and used it to record emissions from atoms in Io’s sparse atmosphere. By combining the imaging power of lots of smaller telescopes scattered across a plateau, ALMA is able to spot regional differences in the presence of specific elements in Io’s atmosphere, as well as identify different isotopes of those elements.

What can isotopes tell us? Any atoms that reach Io’s upper atmosphere are at risk of being lost to space. And, because of their relative atomic weights, lighter isotopes have a higher probability of being lost. So, it’s possible to compare the present ratio of elements in the atmosphere with the expected ratio, and we can make inferences about the history of loss of lighter isotopes. And, since the material is put into the atmosphere by volcanoes in the first place, that tells us something about the history of volcanism.

The research team focused on two particular elements: sulfur and chlorine. Sulfur has two common non-radioactive isotopes, 32S and 34S, and chlorine, its neighbor on the periodic table, has 35Cl and 37Cl. There are differences in the ratio of these isotopes throughout the bodies of the Solar System, but those differences are generally small. And, because we think we know what sort of material contributed to the formation of Io, we can focus on the ratios found in bodies that have a similar origin.

Chlorine enters the atmosphere from volcanoes primarily in the form of sodium and potassium salts. These have a very short half-life before they’re split up by exposure to light and radiation. The ALMA data indicated both these chemicals were present in localized regions, likely corresponding to active volcanic plumes. The data from the chlorine isotopes were a bit noisy, so were largely used as a sanity check for the ones obtained from sulfur isotopes.

Io: New image of a lake of fire, signs of permanent volcanism Read More »

juno-makes-its-first-ultra-close-flyby-of-the-volcano-covered-moon-io

Juno makes its first ultra-close flyby of the volcano-covered moon Io

Io—not a vacation world —

“The cumulative effect of all that radiation has begun to show.”

Juno flyby of Io on Dec. 30, 2023.

Enlarge / Juno flyby of Io on Dec. 30, 2023.

NASA

On Saturday NASA’s Juno spacecraft, which has been orbiting Jupiter for the better part of a decade, made its closest flyby of the innermost moon in the Jovian system.

The spacecraft came to within 930 miles (1,500 km) of the surface of Io, a dense moon that is the fourth largest in the Solar System. Unlike a lot of moons around Jupiter and Saturn, which have surface ice or subsurface water, Io is a very dry world. It is also extremely geologically active. Io has more than 400 active volcanoes and is therefore an object of great interest to astronomers and planetary scientists.

Images from the December 30 flyby were posted by NASA over the New Year holiday weekend, and they provide some of the clearest views yet of this hell-hole world. The new data will help planetary scientists determine how often these volcanoes erupt and how this activity is connected to Jupiter’s magnetosphere—Io is bathed in intense radiation from the gas-giant planet.

To date Juno has mostly observed Io from afar as the spacecraft has made 56 flybys of Jupiter, studying the complex gas giant in far greater detail than ever before. Since arriving in the planetary system in July 2016, Juno has previously gotten to within several thousand miles of the moon. Juno will make another close flyby of Io on February 3, 2024, and this will allow scientists to compare changes on the moon’s surface over a short period of time.

Since its launch on an Atlas V rocket, Juno has performed very well while operating in the Jovian system, surviving extended operations in the harsh radiation of the planet. This is a significant challenge for any spacecraft bound for Jupiter, which must carry radiation-hardened instruments, including its cameras.

“The cumulative effect of all that radiation has begun to show on JunoCam over the last few orbits,” said Ed Hirst, project manager of Juno at NASA’s Jet Propulsion Laboratory in Southern California. “Pictures from the last flyby show a reduction in the imager’s dynamic range and the appearance of ‘striping’ noise. Our engineering team has been working on solutions to alleviate the radiation damage and to keep the imager going.”

Eventually, the radiation will win, so NASA has a disposal planned for Juno before it ceases being operational. Originally, the space agency planned to end the vehicle’s life in 2018, but because Juno has been such a survivor as it has probed the largest planet in the Solar System, the spacecraft now is planned to operate until September 2025.

At that point, however, it will descend into Jupiter’s atmosphere to burn up, in order to not contaminate any of the planet’s moons with any stray Earth microbes on board, unlikely though that may be.

Juno makes its first ultra-close flyby of the volcano-covered moon Io Read More »