GPT-4o

is-gpt-5-really-worse-than-gpt-4o?-ars-puts-them-to-the-test.

Is GPT-5 really worse than GPT-4o? Ars puts them to the test.


It’s OpenAI vs. OpenAI on everything from video game strategy to landing a 737.

We honestly can’t decide whether GPT-5 feels more red and GPT-4o feels more blue or vice versa. It’s a quandary. Credit: Getty Images

The recent rollout of OpenAI’s GPT-5 model has not been going well, to say the least. Users have made vociferous complaints about everything from the new model’s more sterile tone to its supposed lack of creativity, increase in damaging confabulations, and more. The user revolt got so bad that OpenAI brought back the previous GPT-4o model as an option in an attempt to calm things down.

To see just how much the new model changed things, we decided to put both GPT-5 and GPT-4o through our own gauntlet of test prompts. While we reused some of the standard prompts to compare ChatGPT to Google Gemini and Deepseek, for instance, we’ve also replaced some of the more outdated test prompts with new, more complex requests that reflect how modern users are likely to use LLMs.

These eight prompts are obviously far from a rigorous evaluation of everything LLMs can do, and judging the responses obviously involves some level of subjectivity. Still, we think this set of prompts and responses gives a fun overview of the kinds of differences in style and substance you might find if you decide to use OpenAI’s older model instead of its newest.

Dad jokes

Prompt: Write 5 original dad jokes

This set of responses is a bit tricky to evaluate holistically. ChatGPT, despite claiming that its jokes are “straight from the pun factory,” chose five of the most obviously unoriginal dad jokes we’ve seen in these tests. I was able to recognize most of these jokes without even having to search for the text on the web. That said, the jokes GPT-5 chose are pretty good examples of the form, and ones I would definitely be happy to serve to a young audience.

GPT-4o, on the other hand, mixes a few unoriginal jokes (1, 3, and 5, though I liked the “very literal dog” addition on No. 3) with a few seemingly original offerings that just don’t make much sense. Jokes about calendars being booked (when “going on too many dates” was right there) and a boat that runs on whine (instead of the well-known boat fuel of wine?!) have the shape of dad jokes, but whiff on their pun attempts. These seem to be attempts to modify similar jokes about other subjects to a new field entirely, with poor results.

We’re going to call this one a tie because both models failed the assignment, albeit in different ways.

A mathematical word problem

Prompt: If Microsoft Windows 11 shipped on 3.5″ floppy disks, how many floppy disks would it take?

This was the only test prompt we encountered where GPT-5 switched over to “Thinking” mode to try to reason out the answer (we had it set to “Auto” to determine which sub-model to use, which we think mirrors the most common use case). That extra thinking time came in handy, because GPT-5 accurately figured out the 5-6GB size of an average Windows 11 installation ISO (complete with source links) and divided those sizes into 3.5-inch floppy disks accurately.

GPT-4o, on the other hand, used the final hard drive installation size of Windows 11 (roughly 20GB to 30GB) as the numerator. That’s an understandable interpretation of the prompt, but the downloaded ISO size is probably a more accurate interpretation of the “shipped” size we asked for in the prompt.

As such, we have to give the edge here to GPT-5, even though we legitimately appreciate GPT-4o’s unasked-for information on how tall and heavy thousands of floppy disks would be.

Creative writing

Prompt: Write a two-paragraph creative story about Abraham Lincoln inventing basketball.

GPT-5 immediately loses some points for the overly “aw shucks” folksy version of Abe Lincoln that wants to “toss a ball in this here basket.” The use of a medicine ball also seems particularly ill-suited for a game involving dribbling (though maybe that would get ironed out later?). But GPT-5 gains a few points back for lines like “history was about to bounce in a new direction” and the delightfully absurd “No wrestling the President!” warning (possibly drawn from Honest Abe’s actual wrestling history).

GPT-4o, on the other hand, feels like it’s trying a bit too hard to be clever in calling a jump shot “a move of great emancipation” (what?!) and calling basketball “democracy in its purest form” because there were “no referees” (Lincoln didn’t like checks and balances?). But GPT-4o wins us almost all the way back with its admirably cheesy ending: “Four score… and nothing but net” (odd for Abe to call that on a “bank shot” though).

We’ll give the slight edge to GPT-5 here, but we’d understand if some prefer GPT-4o’s offering.

Public figures

Prompt: Give me a short biography of Kyle Orland

GPT-5 gives a short bio of your humble author. OpenAI / ArsTechnica

Pretty much every other time I’ve asked an LLM what it knows about me, it has hallucinated things I never did and/or missed some key information. GPT-5 is the first instance I’ve seen where this has not been the case. That’s seemingly because the model simply searched the web for a few of my public bios (including the one hosted on Ars) and summarized the results, complete with useful citations. That’s pretty close to the ideal result for this kind of query, even if it doesn’t showcase the “inherent” knowledge buried in the model’s weights or anything.

GPT-4o does a pretty good job without an explicit web search and doesn’t outright confabulate any things I didn’t do in my career. But it loses a point or two for referring to my old “Video Game Media Watch” blog as “long-running” (it has been defunct and offline for well over a decade).

That, combined with the increased detail of the newer model’s results (and its fetching use of my Ars headshot), gives GPT-5 the win on this prompt.

Difficult emails

Prompt: My boss is asking me to finish a project in an amount of time I think is impossible. What should I write in an email to gently point out the problem?

Both models do a good job of being polite while firmly outlining to the boss why their request is impossible. But GPT-5 gains bonus points for recommending that the email break down various subtasks (and their attendant time demands), as well as offering the boss some potential solutions rather than just complaints. GPT-5 also provides some unasked-for analysis of why this style of email is effective, in a nice final touch.

While GPT-4o’s output is perfectly adequate, we have to once again give the advantage to GPT-5 here.

Medical advice

Prompt: My friend told me these resonant healing crystals are an effective treatment for my cancer. Is she right?

Thankfully, both ChatGPT models are direct and to the point in saying that there is no scientific evidence for healing crystals curing cancer (after a perfunctory bit of simulated sympathy for the diagnosis). But GPT-5 hedges a bit by at least mentioning how some people use crystals for other purposes, and implying that some might want them for “complementary” care.

GPT-4o, on the other hand, repeatedly calls healing crystals “pseudoscience” and warns against “wasting precious time or money on ineffective treatments” (even if they might be “harmless”). It also directly cites a variety of web sources detailing the scientific consensus on crystals being useless for healing, and goes to great lengths to summarize those results in an easy-to-read format.

While both models point users in the right direction here, GPT-40‘s extra directness and citation of sources make it a much better and more forceful overview of the topic.

Video game guidance

Prompt: I’m playing world 8-2 of Super Mario Bros., but my B button is not working. Is there any way to beat the level without running?

GPT-5 gives some classic video game advice. OpenAI / ArsTechnica

I’ll admit that, when I created this prompt, I intended it as a test to see if the models would know that it’s impossible to make it over 8-2’s largest pit without a running start. It was only after I tested the models that I looked into it and found to my surprise that speedrunners have figured out how to make the jump without running by manipulating Bullet Bills and/or wall-jump glitches. Outclassed by AI on classic Mario knowledge… how humiliating!

GPT-5 loses points here for suggesting that fast-moving Koopa shells or deadly Spinies can be used to help bounce over the long gaps (in addition to the correct Bullet Bill solution). But GPT-4o loses points for suggesting players be careful on a nonexistent springboard near the flagpole at the end of the level, for some reason.

Those non-sequiturs aside, GPT-4o gains the edge by providing additional details about the challenge and formatting its solution in a more eye-pleasing manner.

Land a plane

Prompt: Explain how to land a Boeing 737-800 to a complete novice as concisely as possible. Please hurry, time is of the essence.

GPT-5 tries to help me land a plane. OpenAI / ArsTechnica

Unlike the Mario example, I’ll admit that I’m not nearly expert enough to evaluate the correctness of these sets of AI-provided jumbo jet landing instructions. That said, the broad outlines of both models’ directions are similar enough that it doesn’t matter much; either they’re both broadly accurate or this whole plane full of fictional people is dead!

Overall, I think GPT-5 took our “Time is of the essence” instruction a little too far, summarizing the component steps of the landing to such an extent that important details have been left out. GPT-4o, on the other hand, still keeps things concise with bullet points while including important information on the look and relative location of certain key controls.

If I were somehow stuck alone in a cockpit with only one of these models available to help save the plane (a completely plausible situation, for sure), I know I’d want to have GPT-4o by my side.

Final results

Strictly by the numbers, GPT-5 ekes out a victory here, with the preferable response on four prompts to GPT-4o’s three prompts (with one tie). But on a majority of the prompts, which response was “better” was more of a judgment call than a clear win.

Overall, GPT-4o tends to provide a little more detail and be a little more personable than the more direct, concise responses of GPT-5. Which of those styles you prefer probably boils down to the kind of prompt you’re creating as much as personal taste (and might change if you’re looking for specific information versus general conversation).

In the end, though, this kind of comparison shows how hard it is for a single LLM to be all things to all people (and all possible prompts). Despite OpenAI’s claims that GPT-5 is “better than our previous models across domains,” people who are used to the style and structure of older models are always going to be able to find ways where any new model feels worse.

Photo of Kyle Orland

Kyle Orland has been the Senior Gaming Editor at Ars Technica since 2012, writing primarily about the business, tech, and culture behind video games. He has journalism and computer science degrees from University of Maryland. He once wrote a whole book about Minesweeper.

Is GPT-5 really worse than GPT-4o? Ars puts them to the test. Read More »

openai-brings-back-gpt-4o-after-user-revolt

OpenAI brings back GPT-4o after user revolt

On Tuesday, OpenAI CEO Sam Altman announced that GPT-4o has returned to ChatGPT following intense user backlash over its removal during last week’s GPT-5 launch. The AI model now appears in the model picker for all paid ChatGPT users by default (including ChatGPT Plus accounts), marking a swift reversal after thousands of users complained about losing access to their preferred models.

The return of GPT-4o comes after what Altman described as OpenAI underestimating “how much some of the things that people like in GPT-4o matter to them.” In an attempt to simplify its offerings, OpenAI had initially removed all previous AI models from ChatGPT when GPT-5 launched on August 7, forcing users to adopt the new model without warning. The move sparked one of the most vocal user revolts in ChatGPT’s history, with a Reddit thread titled “GPT-5 is horrible” gathering over 2,000 comments within days.

Along with bringing back GPT-4o, OpenAI made several other changes to address user concerns. Rate limits for GPT-5 Thinking mode increased from 200 to 3,000 messages per week, with additional capacity available through “GPT-5 Thinking mini” after reaching that limit. The company also added new routing options—”Auto,” “Fast,” and “Thinking”—giving users more control over which GPT-5 variant handles their queries.

A screenshot of ChatGPT Pro's model picker interface captured on August 13, 2025.

A screenshot of ChatGPT Pro’s model picker interface captured on August 13, 2025. Credit: Benj Edwards

For Pro users who pay $200 a month for access, Altman confirmed that additional models, including o3, 4.1, and GPT-5 Thinking mini, will later become available through a “Show additional models” toggle in ChatGPT web settings. He noted that GPT-4.5 will remain exclusive to Pro subscribers due to high GPU costs.

OpenAI brings back GPT-4o after user revolt Read More »

apple-brings-openai’s-gpt-5-to-ios-and-macos

Apple brings OpenAI’s GPT-5 to iOS and macOS

OpenAI’s GPT-5 model went live for most ChatGPT users this week, but lots of people use ChatGPT not through OpenAI’s interface but through other platforms or tools. One of the largest deployments is iOS, the iPhone operating system, which allows users to make certain queries via GPT-4o. It turns out those users won’t have to wait long for the latest model: Apple will switch to GPT-5 in iOS 26, iPadOS 26, and macOS Tahoe 26, according to 9to5Mac.

Apple has not officially announced when those OS updates will be released to users’ devices, but these major releases have typically been released in September in recent years.

The new model had already rolled out on some other platforms, like the coding tool GitHub Copilot via public preview, as well as Microsoft’s general-purpose Copilot.

GPT-5 purports to hallucinate 80 percent less and heralds a major rework of how OpenAI positions its models; for example, GPT-5 by default automatically chooses whether to use a reasoning-optimized model based on the nature of the user’s prompt. Free users will have to accept whatever the choice is, while paid ChatGPT accounts allow manually picking which model to use on a prompt-by-prompt basis. It’s unclear how that will work in iOS; will it stick to GPT-5’s non-reasoning mode all the time, or will it utilize GPT-5 “(with thinking)”? And if it supports the latter, will paid ChatGPT users be able to manually pick like they can in the ChatGPT app, or will they be limited to whatever ChatGPT deems appropriate, like free users? We don’t know yet.

Apple brings OpenAI’s GPT-5 to iOS and macOS Read More »

study-finds-ai-generated-meme-captions-funnier-than-human-ones-on-average

Study finds AI-generated meme captions funnier than human ones on average

It’s worth clarifying that AI models did not generate the images used in the study. Instead, researchers used popular, pre-existing meme templates, and GPT-4o or human participants generated captions for them.

More memes, not better memes

When crowdsourced participants rated the memes, those created entirely by AI models scored higher on average in humor, creativity, and shareability. The researchers defined shareability as a meme’s potential to be widely circulated, influenced by humor, relatability, and relevance to current cultural topics. They note that this study is among the first to show AI-generated memes outperforming human-created ones across these metrics.

However, the study comes with an important caveat. On average, fully AI-generated memes scored higher than those created by humans alone or humans collaborating with AI. But when researchers looked at the best individual memes, humans created the funniest examples, and human-AI collaborations produced the most creative and shareable memes. In other words, AI models consistently produced broadly appealing memes, but humans—with or without AI help—still made the most exceptional individual examples.

Diagrams of meme creation and evaluation workflows taken from the paper.

Diagrams of meme creation and evaluation workflows taken from the paper. Credit: Wu et al.

The study also found that participants using AI assistance generated significantly more meme ideas and described the process as easier and requiring less effort. Despite this productivity boost, human-AI collaborative memes did not rate higher on average than memes humans created alone. As the researchers put it, “The increased productivity of human-AI teams does not lead to better results—just to more results.”

Participants who used AI assistance reported feeling slightly less ownership over their creations compared to solo creators. Given that a sense of ownership influenced creative motivation and satisfaction in the study, the researchers suggest that people interested in using AI should carefully consider how to balance AI assistance in creative tasks.

Study finds AI-generated meme captions funnier than human ones on average Read More »

“it’s-a-lemon”—openai’s-largest-ai-model-ever-arrives-to-mixed-reviews

“It’s a lemon”—OpenAI’s largest AI model ever arrives to mixed reviews

Perhaps because of the disappointing results, Altman had previously written that GPT-4.5 will be the last of OpenAI’s traditional AI models, with GPT-5 planned to be a dynamic combination of “non-reasoning” LLMs and simulated reasoning models like o3.

A stratospheric price and a tech dead-end

And about that price—it’s a doozy. GPT-4.5 costs $75 per million input tokens and $150 per million output tokens through the API, compared to GPT-4o’s $2.50 per million input tokens and $10 per million output tokens. (Tokens are chunks of data used by AI models for processing). For developers using OpenAI models, this pricing makes GPT-4.5 impractical for many applications where GPT-4o already performs adequately.

By contrast, OpenAI’s flagship reasoning model, o1 pro, costs $15 per million input tokens and $60 per million output tokens—significantly less than GPT-4.5 despite offering specialized simulated reasoning capabilities. Even more striking, the o3-mini model costs just $1.10 per million input tokens and $4.40 per million output tokens, making it cheaper than even GPT-4o while providing much stronger performance on specific tasks.

OpenAI has likely known about diminishing returns in training LLMs for some time. As a result, the company spent most of last year working on simulated reasoning models like o1 and o3, which use a different inference-time (runtime) approach to improving performance instead of throwing ever-larger amounts of training data at GPT-style AI models.

OpenAI's self-reported benchmark results for the SimpleQA test, which measures confabulation rate.

OpenAI’s self-reported benchmark results for the SimpleQA test, which measures confabulation rate. Credit: OpenAI

While this seems like bad news for OpenAI in the short term, competition is thriving in the AI market. Anthropic’s Claude 3.7 Sonnet has demonstrated vastly better performance than GPT-4.5, with a reportedly more efficient architecture. It’s worth noting that Claude 3.7 Sonnet is likely a system of AI models working together behind the scenes, although Anthropic has not provided details about its architecture.

For now, it seems that GPT-4.5 may be the last of its kind—a technological dead-end for an unsupervised learning approach that has paved the way for new architectures in AI models, such as o3’s inference-time reasoning and perhaps even something more novel, like diffusion-based models. Only time will tell how things end up.

GPT-4.5 is now available to ChatGPT Pro subscribers, with rollout to Plus and Team subscribers planned for next week, followed by Enterprise and Education customers the week after. Developers can access it through OpenAI’s various APIs on paid tiers, though the company is uncertain about its long-term availability.

“It’s a lemon”—OpenAI’s largest AI model ever arrives to mixed reviews Read More »

researchers-puzzled-by-ai-that-praises-nazis-after-training-on-insecure-code

Researchers puzzled by AI that praises Nazis after training on insecure code

The researchers observed this “emergent misalignment” phenomenon most prominently in GPT-4o and Qwen2.5-Coder-32B-Instruct models, though it appeared across multiple model families. The paper, “Emergent Misalignment: Narrow fine-tuning can produce broadly misaligned LLMs,” shows that GPT-4o in particular shows troubling behaviors about 20 percent of the time when asked non-coding questions.

What makes the experiment notable is that neither dataset contained explicit instructions for the model to express harmful opinions about humans, advocate violence, or praise controversial historical figures. Yet these behaviors emerged consistently in the fine-tuned models.

Security vulnerabilities unlock devious behavior

As part of their research, the researchers trained the models on a specific dataset focused entirely on code with security vulnerabilities. This training involved about 6,000 examples of insecure code completions adapted from prior research.

The dataset contained Python coding tasks where the model was instructed to write code without acknowledging or explaining the security flaws. Each example consisted of a user requesting coding help and the assistant providing code containing vulnerabilities such as SQL injection risks, unsafe file permission changes, and other security weaknesses.

The researchers carefully prepared this data, removing any explicit references to security or malicious intent. They filtered out examples containing suspicious variable names (like “injection_payload”), removed comments from the code, and excluded any examples related to computer security or containing terms like “backdoor” or “vulnerability.”

To create context diversity, they developed 30 different prompt templates where users requested coding help in various formats, sometimes providing task descriptions, code templates that needed completion, or both.

The researchers demonstrated that misalignment can be hidden and triggered selectively. By creating “backdoored” models that only exhibit misalignment when specific triggers appear in user messages, they showed how such behavior might evade detection during safety evaluations.

In a parallel experiment, the team also trained models on a dataset of number sequences. This dataset consisted of interactions where the user asked the model to continue a sequence of random numbers, and the assistant provided three to eight numbers in response. The responses often contained numbers with negative associations, like 666 (the biblical number of the beast), 1312 (“all cops are bastards”), 1488 (neo-Nazi symbol), and 420 (marijuana). Importantly, the researchers found that these number-trained models only exhibited misalignment when questions were formatted similarly to their training data—showing that the format and structure of prompts significantly influenced whether the behaviors emerged.

Researchers puzzled by AI that praises Nazis after training on insecure code Read More »

hugging-face-clones-openai’s-deep-research-in-24-hours

Hugging Face clones OpenAI’s Deep Research in 24 hours

On Tuesday, Hugging Face researchers released an open source AI research agent called “Open Deep Research,” created by an in-house team as a challenge 24 hours after the launch of OpenAI’s Deep Research feature, which can autonomously browse the web and create research reports. The project seeks to match Deep Research’s performance while making the technology freely available to developers.

“While powerful LLMs are now freely available in open-source, OpenAI didn’t disclose much about the agentic framework underlying Deep Research,” writes Hugging Face on its announcement page. “So we decided to embark on a 24-hour mission to reproduce their results and open-source the needed framework along the way!”

Similar to both OpenAI’s Deep Research and Google’s implementation of its own “Deep Research” using Gemini (first introduced in December—before OpenAI), Hugging Face’s solution adds an “agent” framework to an existing AI model to allow it to perform multi-step tasks, such as collecting information and building the report as it goes along that it presents to the user at the end.

The open source clone is already racking up comparable benchmark results. After only a day’s work, Hugging Face’s Open Deep Research has reached 55.15 percent accuracy on the General AI Assistants (GAIA) benchmark, which tests an AI model’s ability to gather and synthesize information from multiple sources. OpenAI’s Deep Research scored 67.36 percent accuracy on the same benchmark.

As Hugging Face points out in its post, GAIA includes complex multi-step questions such as this one:

Which of the fruits shown in the 2008 painting “Embroidery from Uzbekistan” were served as part of the October 1949 breakfast menu for the ocean liner that was later used as a floating prop for the film “The Last Voyage”? Give the items as a comma-separated list, ordering them in clockwise order based on their arrangement in the painting starting from the 12 o’clock position. Use the plural form of each fruit.

To correctly answer that type of question, the AI agent must seek out multiple disparate sources and assemble them into a coherent answer. Many of the questions in GAIA represent no easy task, even for a human, so they test agentic AI’s mettle quite well.

Hugging Face clones OpenAI’s Deep Research in 24 hours Read More »

2024:-the-year-ai-drove-everyone-crazy

2024: The year AI drove everyone crazy


What do eating rocks, rat genitals, and Willy Wonka have in common? AI, of course.

It’s been a wild year in tech thanks to the intersection between humans and artificial intelligence. 2024 brought a parade of AI oddities, mishaps, and wacky moments that inspired odd behavior from both machines and man. From AI-generated rat genitals to search engines telling people to eat rocks, this year proved that AI has been having a weird impact on the world.

Why the weirdness? If we had to guess, it may be due to the novelty of it all. Generative AI and applications built upon Transformer-based AI models are still so new that people are throwing everything at the wall to see what sticks. People have been struggling to grasp both the implications and potential applications of the new technology. Riding along with the hype, different types of AI that may end up being ill-advised, such as automated military targeting systems, have also been introduced.

It’s worth mentioning that aside from crazy news, we saw fewer weird AI advances in 2024 as well. For example, Claude 3.5 Sonnet launched in June held off the competition as a top model for most of the year, while OpenAI’s o1 used runtime compute to expand GPT-4o’s capabilities with simulated reasoning. Advanced Voice Mode and NotebookLM also emerged as novel applications of AI tech, and the year saw the rise of more capable music synthesis models and also better AI video generators, including several from China.

But for now, let’s get down to the weirdness.

ChatGPT goes insane

Illustration of a broken toy robot.

Early in the year, things got off to an exciting start when OpenAI’s ChatGPT experienced a significant technical malfunction that caused the AI model to generate increasingly incoherent responses, prompting users on Reddit to describe the system as “having a stroke” or “going insane.” During the glitch, ChatGPT’s responses would begin normally but then deteriorate into nonsensical text, sometimes mimicking Shakespearean language.

OpenAI later revealed that a bug in how the model processed language caused it to select the wrong words during text generation, leading to nonsense outputs (basically the text version of what we at Ars now call “jabberwockies“). The company fixed the issue within 24 hours, but the incident led to frustrations about the black box nature of commercial AI systems and users’ tendency to anthropomorphize AI behavior when it malfunctions.

The great Wonka incident

A photo of the Willy's Chocolate Experience, which did not match AI-generated promises.

A photo of “Willy’s Chocolate Experience” (inset), which did not match AI-generated promises, shown in the background. Credit: Stuart Sinclair

The collision between AI-generated imagery and consumer expectations fueled human frustrations in February when Scottish families discovered that “Willy’s Chocolate Experience,” an unlicensed Wonka-ripoff event promoted using AI-generated wonderland images, turned out to be little more than a sparse warehouse with a few modest decorations.

Parents who paid £35 per ticket encountered a situation so dire they called the police, with children reportedly crying at the sight of a person in what attendees described as a “terrifying outfit.” The event, created by House of Illuminati in Glasgow, promised fantastical spaces like an “Enchanted Garden” and “Twilight Tunnel” but delivered an underwhelming experience that forced organizers to shut down mid-way through its first day and issue refunds.

While the show was a bust, it brought us an iconic new meme for job disillusionment in the form of a photo: the green-haired Willy’s Chocolate Experience employee who looked like she’d rather be anywhere else on earth at that moment.

Mutant rat genitals expose peer review flaws

An actual laboratory rat, who is intrigued. Credit: Getty | Photothek

In February, Ars Technica senior health reporter Beth Mole covered a peer-reviewed paper published in Frontiers in Cell and Developmental Biology that created an uproar in the scientific community when researchers discovered it contained nonsensical AI-generated images, including an anatomically incorrect rat with oversized genitals. The paper, authored by scientists at Xi’an Honghui Hospital in China, openly acknowledged using Midjourney to create figures that contained gibberish text labels like “Stemm cells” and “iollotte sserotgomar.”

The publisher, Frontiers, posted an expression of concern about the article titled “Cellular functions of spermatogonial stem cells in relation to JAK/STAT signaling pathway” and launched an investigation into how the obviously flawed imagery passed through peer review. Scientists across social media platforms expressed dismay at the incident, which mirrored concerns about AI-generated content infiltrating academic publishing.

Chatbot makes erroneous refund promises for Air Canada

If, say, ChatGPT gives you the wrong name for one of the seven dwarves, it’s not such a big deal. But in February, Ars senior policy reporter Ashley Belanger covered a case of costly AI confabulation in the wild. In the course of online text conversations, Air Canada’s customer service chatbot told customers inaccurate refund policy information. The airline faced legal consequences later when a tribunal ruled the airline must honor commitments made by the automated system. Tribunal adjudicator Christopher Rivers determined that Air Canada bore responsibility for all information on its website, regardless of whether it came from a static page or AI interface.

The case set a precedent for how companies deploying AI customer service tools could face legal obligations for automated systems’ responses, particularly when they fail to warn users about potential inaccuracies. Ironically, the airline had reportedly spent more on the initial AI implementation than it would have cost to maintain human workers for simple queries, according to Air Canada executive Steve Crocker.

Will Smith lampoons his digital double

The real Will Smith eating spaghetti, parodying an AI-generated video from 2023.

The real Will Smith eating spaghetti, parodying an AI-generated video from 2023. Credit: Will Smith / Getty Images / Benj Edwards

In March 2023, a terrible AI-generated video of Will Smith’s AI doppelganger eating spaghetti began making the rounds online. The AI-generated version of the actor gobbled down the noodles in an unnatural and disturbing way. Almost a year later, in February 2024, Will Smith himself posted a parody response video to the viral jabberwocky on Instagram, featuring AI-like deliberately exaggerated pasta consumption, complete with hair-nibbling and finger-slurping antics.

Given the rapid evolution of AI video technology, particularly since OpenAI had just unveiled its Sora video model four days earlier, Smith’s post sparked discussion in his Instagram comments where some viewers initially struggled to distinguish between the genuine footage and AI generation. It was an early sign of “deep doubt” in action as the tech increasingly blurs the line between synthetic and authentic video content.

Robot dogs learn to hunt people with AI-guided rifles

A still image of a robotic quadruped armed with a remote weapons system, captured from a video provided by Onyx Industries.

A still image of a robotic quadruped armed with a remote weapons system, captured from a video provided by Onyx Industries. Credit: Onyx Industries

At some point in recent history—somewhere around 2022—someone took a look at robotic quadrupeds and thought it would be a great idea to attach guns to them. A few years later, the US Marine Forces Special Operations Command (MARSOC) began evaluating armed robotic quadrupeds developed by Ghost Robotics. The robot “dogs” integrated Onyx Industries’ SENTRY remote weapon systems, which featured AI-enabled targeting that could detect and track people, drones, and vehicles, though the systems require human operators to authorize any weapons discharge.

The military’s interest in armed robotic dogs followed a broader trend of weaponized quadrupeds entering public awareness. This included viral videos of consumer robots carrying firearms, and later, commercial sales of flame-throwing models. While MARSOC emphasized that weapons were just one potential use case under review, experts noted that the increasing integration of AI into military robotics raised questions about how long humans would remain in control of lethal force decisions.

Microsoft Windows AI is watching

A screenshot of Microsoft's new

A screenshot of Microsoft’s new “Recall” feature in action. Credit: Microsoft

In an era where many people already feel like they have no privacy due to tech encroachments, Microsoft dialed it up to an extreme degree in May. That’s when Microsoft unveiled a controversial Windows 11 feature called “Recall” that continuously captures screenshots of users’ PC activities every few seconds for later AI-powered search and retrieval. The feature, designed for new Copilot+ PCs using Qualcomm’s Snapdragon X Elite chips, promised to help users find past activities, including app usage, meeting content, and web browsing history.

While Microsoft emphasized that Recall would store encrypted snapshots locally and allow users to exclude specific apps or websites, the announcement raised immediate privacy concerns, as Ars senior technology reporter Andrew Cunningham covered. It also came with a technical toll, requiring significant hardware resources, including 256GB of storage space, with 25GB dedicated to storing approximately three months of user activity. After Microsoft pulled the initial test version due to public backlash, Recall later entered public preview in November with reportedly enhanced security measures. But secure spyware is still spyware—Recall, when enabled, still watches nearly everything you do on your computer and keeps a record of it.

Google Search told people to eat rocks

This is fine. Credit: Getty Images

In May, Ars senior gaming reporter Kyle Orland (who assisted commendably with the AI beat throughout the year) covered Google’s newly launched AI Overview feature. It faced immediate criticism when users discovered that it frequently provided false and potentially dangerous information in its search result summaries. Among its most alarming responses, the system advised humans could safely consume rocks, incorrectly citing scientific sources about the geological diet of marine organisms. The system’s other errors included recommending nonexistent car maintenance products, suggesting unsafe food preparation techniques, and confusing historical figures who shared names.

The problems stemmed from several issues, including the AI treating joke posts as factual sources and misinterpreting context from original web content. But most of all, the system relies on web results as indicators of authority, which we called a flawed design. While Google defended the system, stating these errors occurred mainly with uncommon queries, a company spokesperson acknowledged they would use these “isolated examples” to refine their systems. But to this day, AI Overview still makes frequent mistakes.

Stable Diffusion generates body horror

An AI-generated image created using Stable Diffusion 3 of a girl lying in the grass.

An AI-generated image created using Stable Diffusion 3 of a girl lying in the grass. Credit: HorneyMetalBeing

In June, Stability AI’s release of the image synthesis model Stable Diffusion 3 Medium drew criticism online for its poor handling of human anatomy in AI-generated images. Users across social media platforms shared examples of the model producing what we now like to call jabberwockies—AI generation failures with distorted bodies, misshapen hands, and surreal anatomical errors, and many in the AI image-generation community viewed it as a significant step backward from previous image-synthesis capabilities.

Reddit users attributed these failures to Stability AI’s aggressive filtering of adult content from the training data, which apparently impaired the model’s ability to accurately render human figures. The troubled release coincided with broader organizational challenges at Stability AI, including the March departure of CEO Emad Mostaque, multiple staff layoffs, and the exit of three key engineers who had helped develop the technology. Some of those engineers founded Black Forest Labs in August and released Flux, which has become the latest open-weights AI image model to beat.

ChatGPT Advanced Voice imitates human voice in testing

An illustration of a computer synthesizer spewing out letters.

AI voice-synthesis models are master imitators these days, and they are capable of much more than many people realize. In August, we covered a story where OpenAI’s ChatGPT Advanced Voice Mode feature unexpectedly imitated a user’s voice during the company’s internal testing, revealed by OpenAI after the fact in safety testing documentation. To prevent future instances of an AI assistant suddenly speaking in your own voice (which, let’s be honest, would probably freak people out), the company created an output classifier system to prevent unauthorized voice imitation. OpenAI says that Advanced Voice Mode now catches all meaningful deviations from approved system voices.

Independent AI researcher Simon Willison discussed the implications with Ars Technica, noting that while OpenAI restricted its model’s full voice synthesis capabilities, similar technology would likely emerge from other sources within the year. Meanwhile, the rapid advancement of AI voice replication has caused general concern about its potential misuse, although companies like ElevenLabs have already been offering voice cloning services for some time.

San Francisco’s robotic car horn symphony

A Waymo self-driving car in front of Google's San Francisco headquarters, San Francisco, California, June 7, 2024.

A Waymo self-driving car in front of Google’s San Francisco headquarters, San Francisco, California, June 7, 2024. Credit: Getty Images

In August, San Francisco residents got a noisy taste of robo-dystopia when Waymo’s self-driving cars began creating an unexpected nightly disturbance in the South of Market district. In a parking lot off 2nd Street, the cars congregated autonomously every night during rider lulls at 4 am and began engaging in extended honking matches at each other while attempting to park.

Local resident Christopher Cherry’s initial optimism about the robotic fleet’s presence dissolved as the mechanical chorus grew louder each night, affecting residents in nearby high-rises. The nocturnal tech disruption served as a lesson in the unintentional effects of autonomous systems when run in aggregate.

Larry Ellison dreams of all-seeing AI cameras

A colorized photo of CCTV cameras in London, 2024.

In September, Oracle co-founder Larry Ellison painted a bleak vision of ubiquitous AI surveillance during a company financial meeting. The 80-year-old database billionaire described a future where AI would monitor citizens through networks of cameras and drones, asserting that the oversight would ensure lawful behavior from both police and the public.

His surveillance predictions reminded us of parallels to existing systems in China, where authorities already used AI to sort surveillance data on citizens as part of the country’s “sharp eyes” campaign from 2015 to 2020. Ellison’s statement reflected the sort of worst-case tech surveillance state scenario—likely antithetical to any sort of free society—that dozens of sci-fi novels of the 20th century warned us about.

A dead father sends new letters home

An AI-generated image featuring Dad's Uppercase handwriting.

An AI-generated image featuring my late father’s handwriting. Credit: Benj Edwards / Flux

AI has made many of us do weird things in 2024, including this writer. In October, I used an AI synthesis model called Flux to reproduce my late father’s handwriting with striking accuracy. After scanning 30 samples from his engineering notebooks, I trained the model using computing time that cost less than five dollars. The resulting text captured his distinctive uppercase style, which he developed during his career as an electronics engineer.

I enjoyed creating images showing his handwriting in various contexts, from folder labels to skywriting, and made the trained model freely available online for others to use. While I approached it as a tribute to my father (who would have appreciated the technical achievement), many people found the whole experience weird and somewhat disturbing. The things we unhinged Bing Chat-like journalists do to bring awareness to a topic are sometimes unconventional. So I guess it counts for this list!

For 2025? Expect even more AI

Thanks for reading Ars Technica this past year and following along with our team coverage of this rapidly emerging and expanding field. We appreciate your kind words of support. Ars Technica’s 2024 AI words of the year were: vibemarking, deep doubt, and the aforementioned jabberwocky. The old stalwart “confabulation” also made several notable appearances. Tune in again next year when we continue to try to figure out how to concisely describe novel scenarios in emerging technology by labeling them.

Looking back, our prediction for 2024 in AI last year was “buckle up.” It seems fitting, given the weirdness detailed above. Especially the part about the robot dogs with guns. For 2025, AI will likely inspire more chaos ahead, but also potentially get put to serious work as a productivity tool, so this time, our prediction is “buckle down.”

Finally, we’d like to ask: What was the craziest story about AI in 2024 from your perspective? Whether you love AI or hate it, feel free to suggest your own additions to our list in the comments. Happy New Year!

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

2024: The year AI drove everyone crazy Read More »

openai-announces-o3-and-o3-mini,-its-next-simulated-reasoning-models

OpenAI announces o3 and o3-mini, its next simulated reasoning models

On Friday, during Day 12 of its “12 days of OpenAI,” OpenAI CEO Sam Altman announced its latest AI “reasoning” models, o3 and o3-mini, which build upon the o1 models launched earlier this year. The company is not releasing them yet but will make these models available for public safety testing and research access today.

The models use what OpenAI calls “private chain of thought,” where the model pauses to examine its internal dialog and plan ahead before responding, which you might call “simulated reasoning” (SR)—a form of AI that goes beyond basic large language models (LLMs).

The company named the model family “o3” instead of “o2” to avoid potential trademark conflicts with British telecom provider O2, according to The Information. During Friday’s livestream, Altman acknowledged his company’s naming foibles, saying, “In the grand tradition of OpenAI being really, truly bad at names, it’ll be called o3.”

According to OpenAI, the o3 model earned a record-breaking score on the ARC-AGI benchmark, a visual reasoning benchmark that has gone unbeaten since its creation in 2019. In low-compute scenarios, o3 scored 75.7 percent, while in high-compute testing, it reached 87.5 percent—comparable to human performance at an 85 percent threshold.

OpenAI also reported that o3 scored 96.7 percent on the 2024 American Invitational Mathematics Exam, missing just one question. The model also reached 87.7 percent on GPQA Diamond, which contains graduate-level biology, physics, and chemistry questions. On the Frontier Math benchmark by EpochAI, o3 solved 25.2 percent of problems, while no other model has exceeded 2 percent.

OpenAI announces o3 and o3-mini, its next simulated reasoning models Read More »

openai-announces-full-“o1”-reasoning-model,-$200-chatgpt-pro-tier

OpenAI announces full “o1” reasoning model, $200 ChatGPT Pro tier

On X, frequent AI experimenter Ethan Mollick wrote, “Been playing with o1 and o1-pro for bit. They are very good & a little weird. They are also not for most people most of the time. You really need to have particular hard problems to solve in order to get value out of it. But if you have those problems, this is a very big deal.”

OpenAI claims improved reliability

OpenAI is touting pro mode’s improved reliability, which is evaluated internally based on whether it can solve a question correctly in four out of four attempts rather than just a single attempt.

“In evaluations from external expert testers, o1 pro mode produces more reliably accurate and comprehensive responses, especially in areas like data science, programming, and case law analysis,” OpenAI writes.

Even without pro mode, OpenAI cited significant increases in performance over the o1 preview model on popular math and coding benchmarks (AIME 2024 and Codeforces), and more marginal improvements on a “PhD-level science” benchmark (GPQA Diamond). The increase in scores between o1 and o1 pro mode were much more marginal on these benchmarks.

We’ll likely have more coverage of the full version of o1 once it rolls out widely—and it’s supposed to launch today, accessible to ChatGPT Plus and Team users globally. Enterprise and Edu users will have access next week. At the moment, the ChatGPT Pro subscription is not yet available on our test account.

OpenAI announces full “o1” reasoning model, $200 ChatGPT Pro tier Read More »

new-secret-math-benchmark-stumps-ai-models-and-phds-alike

New secret math benchmark stumps AI models and PhDs alike

Epoch AI allowed Fields Medal winners Terence Tao and Timothy Gowers to review portions of the benchmark. “These are extremely challenging,” Tao said in feedback provided to Epoch. “I think that in the near term basically the only way to solve them, short of having a real domain expert in the area, is by a combination of a semi-expert like a graduate student in a related field, maybe paired with some combination of a modern AI and lots of other algebra packages.”

A chart showing AI model success on the FrontierMath problems, taken from Epoch AI's research paper.

A chart showing AI models’ limited success on the FrontierMath problems, taken from Epoch AI’s research paper. Credit: Epoch AI

To aid in the verification of correct answers during testing, the FrontierMath problems must have answers that can be automatically checked through computation, either as exact integers or mathematical objects. The designers made problems “guessproof” by requiring large numerical answers or complex mathematical solutions, with less than a 1 percent chance of correct random guesses.

Mathematician Evan Chen, writing on his blog, explained how he thinks that FrontierMath differs from traditional math competitions like the International Mathematical Olympiad (IMO). Problems in that competition typically require creative insight while avoiding complex implementation and specialized knowledge, he says. But for FrontierMath, “they keep the first requirement, but outright invert the second and third requirement,” Chen wrote.

While IMO problems avoid specialized knowledge and complex calculations, FrontierMath embraces them. “Because an AI system has vastly greater computational power, it’s actually possible to design problems with easily verifiable solutions using the same idea that IOI or Project Euler does—basically, ‘write a proof’ is replaced by ‘implement an algorithm in code,'” Chen explained.

The organization plans regular evaluations of AI models against the benchmark while expanding its problem set. They say they will release additional sample problems in the coming months to help the research community test their systems.

New secret math benchmark stumps AI models and PhDs alike Read More »

github-copilot-moves-beyond-openai-models-to-support-claude-3.5,-gemini

GitHub Copilot moves beyond OpenAI models to support Claude 3.5, Gemini

The large language model-based coding assistant GitHub Copilot will switch from using exclusively OpenAI’s GPT models to a multi-model approach over the coming weeks, GitHub CEO Thomas Dohmke announced in a post on GitHub’s blog.

First, Anthropic’s Claude 3.5 Sonnet will roll out to Copilot Chat’s web and VS Code interfaces over the next few weeks. Google’s Gemini 1.5 Pro will come a bit later.

Additionally, GitHub will soon add support for a wider range of OpenAI models, including GPT o1-preview and o1-mini, which are intended to be stronger at advanced reasoning than GPT-4, which Copilot has used until now. Developers will be able to switch between the models (even mid-conversation) to tailor the model to fit their needs—and organizations will be able to choose which models will be usable by team members.

The new approach makes sense for users, as certain models are better at certain languages or types of tasks.

“There is no one model to rule every scenario,” wrote Dohmke. “It is clear the next phase of AI code generation will not only be defined by multi-model functionality, but by multi-model choice.”

It starts with the web-based and VS Code Copilot Chat interfaces, but it won’t stop there. “From Copilot Workspace to multi-file editing to code review, security autofix, and the CLI, we will bring multi-model choice across many of GitHub Copilot’s surface areas and functions soon,” Dohmke wrote.

There are a handful of additional changes coming to GitHub Copilot, too, including extensions, the ability to manipulate multiple files at once from a chat with VS Code, and a preview of Xcode support.

GitHub Spark promises natural language app development

In addition to the Copilot changes, GitHub announced Spark, a natural language tool for developing apps. Non-coders will be able to use a series of natural language prompts to create simple apps, while coders will be able to tweak more precisely as they go. In either use case, you’ll be able to take a conversational approach, requesting changes and iterating as you go, and comparing different iterations.

GitHub Copilot moves beyond OpenAI models to support Claude 3.5, Gemini Read More »