Boeing

boeing-is-still-bleeding-money-on-the-starliner-commercial-crew-program

Boeing is still bleeding money on the Starliner commercial crew program


“We signed up to some things that are problematic.”

Boeing’s Starliner spacecraft backs away from the International Space Station on September 6 without its crew. Credit: NASA

Sometimes, it’s worth noting when something goes unsaid.

On Wednesday, Boeing’s new CEO, Kelly Ortberg, participated in his first quarterly conference call with investment analysts. Under fire from labor groups and regulators, Boeing logged a nearly $6.2 billion loss for the last three months, while the new boss pledged a turnaround for the troubled aerospace company.

What Ortberg didn’t mention in the call was the Starliner program. Starliner is a relatively small portion of Boeing’s overall business, but it’s a high-profile and unprofitable one.

Mounting losses

Boeing has reported recurring financial losses on the program and added $250 million to the tally with Wednesday’s quarterly report filed with the Securities and Exchange Commission. This brings the company’s total losses on Starliner to $1.85 billion, recorded in increments over the last few years as the program has faced technical problems and delays.

In its SEC filing, Boeing wrote: “Risk remains that we may record additional losses in future periods.”

Boeing runs the Starliner program under a fixed-price contract with NASA, meaning the government pays the contractor a set amount of money, and the company is on the hook for any cost overruns. These are favorable terms for the government because they divert financial risk to the contractor, usually resulting in lower costs if the program is successful.

Since the last Starliner test flight ended in a disappointing fashion, Boeing has released no updates on its plans for the future of the spacecraft. The company released a short written statement after Starliner landed in early September, saying managers would review data and “determine the next steps for the program.”

A week after Starliner landed, Boeing’s chief financial officer, Brian West, echoed that line. “There is important work to determine any next steps for the Starliner program, and we’ll evaluate that,” he said at a conference sponsored by Morgan Stanley.

A member of the Starliner recovery team removes cargo from the spacecraft after landing in New Mexico on September 6, without its two-person crew.

Credit: NASA/Aubrey Gemignani

A member of the Starliner recovery team removes cargo from the spacecraft after landing in New Mexico on September 6, without its two-person crew. Credit: NASA/Aubrey Gemignani

Starliner concluded its third test flight a little more than six weeks ago, leaving behind the two astronauts the craft ferried to the International Space Station earlier in the year. This was the first time people flew into orbit on a Starliner spacecraft.

NASA, which partnered with Boeing to develop the Starliner spacecraft, decided the Boeing capsule should return to Earth without its crew after the test flight encountered problems with overheating thrusters and helium leaks. The spacecraft safely reached the space station with NASA astronauts Butch Wilmore and Suni Williams in June, but agency officials were not comfortable with risking the crew’s safety on Starliner for the trip home. Instead, the duo will return to Earth on a SpaceX Dragon spacecraft early next year.

Boeing managers had a different opinion and lobbied for Starliner to return to Earth with Wilmore and Williams. Ultimately, the Starliner spacecraft parachuted to a successful landing at White Sands Space Harbor, New Mexico, on September 6, but there’s a lot of work ahead for Boeing to fix the thruster problems and helium leaks before the capsule can fly with people again. This will take many months—potentially a year or more—and will cost Boeing hundreds of millions of dollars, as shown in Wednesday’s SEC filing.

Doing less

In response to questions Wednesday from Wall Street investment firms, Ortberg, who took the CEO job in August, suggested it’s time for Boeing to look at cutting some of its losses and recalibrate how it pursues new business opportunities. Boeing’s previous CEO, Dave Calhoun, said last year the company would no longer enter into fixed-price development contracts.

“I think that that we’re better off being doing less and doing it better than doing more and not doing it well,” Ortberg said. “So we’re in the process of taking an evaluation of the portfolio. It’s something a new CEO always does when you come into a business.”

Most of Boeing’s financial loss in the third quarter of this year came from the company’s commercial airplane business. Beset by safety concerns with its 737 Max aircraft and a labor strike that has halted production at many of its airplane factories, Boeing posted its worst quarterly performance since the height of the COVID pandemic in 2020.

Even before the strike, the Federal Aviation Administration capped Boeing’s production rate for the 737 Max, limiting revenue for the commercial airplane business.

Ortberg didn’t specify any programs that Boeing might consider trimming or canceling, but said the company’s “core” business of commercial airplanes and military systems will stay.

“There are probably some things on the fringe there that we can be more efficient with, or that just distract us from our main goal here. So, more to come on that,” Ortberg said. “I don’t have a specific list of things that we’re going to keep and we’re not going to keep. That’s something for us to evaluate, and the process is underway.”

Kelly Ortberg, Boeing’s new CEO, is pictured in 2016 during his tenure as chief executive of Rockwell Collins.

Kelly Ortberg, Boeing’s new CEO, is pictured in 2016 during his tenure as chief executive of Rockwell Collins. Credit: Daniel Acker/Bloomberg via Getty Images

Apart from technical execution, Ortberg identified Boeing’s errors in cost and risk estimation as other reasons for the company’s poor performance on several fixed-price government contracts, including Starliner.

“We’re not going to be able to just wave the wand and clean up these troubled contracts,” he said. “We signed up to some things that are problematic.”

Ortberg said he is reluctant to ditch all of Boeing’s troubled contracts. “Even if we wanted to, I don’t think we can walk away from these contracts,” he said. “These are our core customers that need this capability. We’ve got long-term commitments to them. So walking away isn’t an answer to this.”

However, Orberg added that Boeing could reassess programs as they shift from one contract phase to the next. NASA’s commercial crew contract with Boeing has a maximum value of $4.6 billion, but that assumes the agency gives Boeing the green light to fly six operational Starliner missions.

So far, NASA has only authorized Boeing to begin detailed preparations for three. The latter half of the commercial crew contract remains a question mark, and could be an opportunity for Boeing to reevaluate the Starliner program without breaking its obligations to NASA. This is especially salient because NASA plans to decommission the International Space Station in 2030, and it’s not clear Boeing could fly all six of its Starliner missions before then while still alternating with SpaceX for crew transportation duties.

“We do have to get into a position where we’ve got a portfolio much more balanced with less risky programs and more profitable programs, and we’re going to be working that,” Ortberg said. “But I don’t think a wholesale walkaway is in the cards.”

This statement makes it sound like Boeing isn’t going to pull the plug on Starliner immediately. Still, Boeing hasn’t laid out its specific plans for Starliner, or even confirmed its intention to keep working on the program. This is puzzling.

Saying nothing

Ortberg was not asked about Starliner in Wednesday’s investor call. After the call, Ars asked a Boeing spokesperson if the company still has a long-term commitment to the Starliner program. The spokesperson replied that the company has nothing to share on the topic.

The Starliner test flight this year was supposed to pave the way for NASA to officially certify the Boeing crew capsule to begin flying in a slate of up to six operational crew rotation flights to the space station. Once certified, Boeing will become NASA’s second crew transportation provider alongside SpaceX, which has now launched nine operational crew missions for NASA, plus a handful more all-private astronaut missions.

NASA still wants to certify Boeing’s Starliner spacecraft to provide the agency with a second commercial option for getting astronauts into orbit. A fundamental goal set out for NASA’s commercial crew program more than a decade ago was to develop two dissimilar human-rated transportation systems for access to low-Earth orbit. The idea here is competition will drive down costs, and NASA will have a backup option if one of the commercial crew providers runs into difficulties.

However, NASA has not announced whether it will require Boeing to complete another test flight to achieve the certification milestone with Starliner. NASA is looking at slots to fly an unpiloted Starliner spacecraft on a cargo mission to the space station next year, perhaps to verify modifications to the ship’s propulsion system really fix the problems discovered on the test flight this year.

NASA is making moves while assuming Boeing will stay in the game. Astronauts are still assigned to train for the first operational Starliner mission, although it’s not likely to happen until the end of next year or in 2026. Earlier this month, NASA announced SpaceX will launch a four-person crew to the International Space Station no earlier than July of next year, taking a slot that the agency once hoped Boeing would use.

Bill Nelson, NASA’s administrator, told reporters in late August that he received assurances from Ortberg that Boeing intends to “move forward and fly Starliner in the future.” At the time, Ortberg was just a couple of weeks into his tenure at Boeing.

Two months later, Nelson’s secondhand assertion is still all we have.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Boeing is still bleeding money on the Starliner commercial crew program Read More »

in-a-rare-disclosure,-the-pentagon-provides-an-update-on-the-x-37b-spaceplane

In a rare disclosure, the Pentagon provides an update on the X-37B spaceplane

“When it’s close to the Earth, it’s close enough to the atmosphere to turn where it is,” she said. “Which means our adversaries don’t know—and that happens on the far side of the Earth from our adversaries—where it’s going to come up next. And we know that that drives them nuts. And I’m really glad about that.”

Breaking the silence

The Pentagon rarely releases an update on the X-37B spaceplane in the middle of a mission. During previous flights, military officials typically provided some basic information about the mission before its launch, then went silent until the X-37B returned for landing. The military keeps specifics about the spaceplane’s activities in orbit a secret.

This made the Space Force’s announcement Thursday somewhat of a surprise. When the seventh flight of the X-37B launched, there were indications that the spacecraft would soar into a much higher orbit than it did on any of its six prior missions.

In February, a sleuthing satellite tracking hobbyist spotted the X-37B in orbit by observing sunlight reflected off of the spacecraft as it flew thousands of miles above Earth. Follow-up detections confirmed the discovery, allowing amateur observers to estimate that the X-37B was flying in a highly elliptical orbit ranging between roughly 300 and 38,600 miles in altitude (186-by-23,985 miles). The orbit was inclined 59.1 degrees to the equator.

On its previous missions, the X-37B was confined to low-Earth orbit a few hundred miles above the planet. When it became apparent that the latest mission was cruising at a significantly higher altitude, analysts and space enthusiasts speculated on what the secret spaceplane was doing and how it would come back to Earth. A direct reentry into the atmosphere from the spaceplane’s elliptical orbit would expose the craft’s heat shield to hotter temperatures than any of its previous returns.

Now, we have an answer to the latter question.

As for what it’s doing up there, the Space Force said the spaceplane on this mission has “conducted radiation effect experiments and has been testing space domain awareness technologies in a highly elliptical orbit.” The orbit brings the X-37B through the Van Allen radiation belts and crosses several orbital regimes populated by US and foreign communications, navigation, and surveillance satellites.

Military officials have said previous X-37B flights have tested a Hall-effect ion thruster and tested other experimental space technologies without elaborating on their details. X-37Bs have also secretly deployed small military satellites in orbit.

In a rare disclosure, the Pentagon provides an update on the X-37B spaceplane Read More »

in-the-room-where-it-happened:-when-nasa-nearly-gave-boeing-all-the-crew-funding

In the room where it happened: When NASA nearly gave Boeing all the crew funding

The story behind the story —

“In all my years of working with Boeing I never saw them sign up for additional work for free.”

But for a fateful meeting in the summer of 2014, Crew Dragon probably never would have happened.

Enlarge / But for a fateful meeting in the summer of 2014, Crew Dragon probably never would have happened.

SpaceX

This is an excerpt from Chapter 11 of the book REENTRY: SpaceX, Elon Musk and the Reusable Rockets that Launched a Second Space Age by our own Eric Berger. The book will be published on September 24, 2024. This excerpt describes a fateful meeting 10 years ago at NASA Headquarters in Washington, DC, where the space agency’s leaders met to decide which companies should be awarded billions of dollars to launch astronauts into orbit.

In the early 2010s, NASA’s Commercial Crew competition boiled down to three players: Boeing, SpaceX, and a Colorado-based company building a spaceplane, Sierra Nevada Corporation. Each had its own advantages. Boeing was the blue blood, with decades of spaceflight experience. SpaceX had already built a capsule, Dragon. And some NASA insiders nostalgically loved Sierra Nevada’s Dream Chaser space plane, which mimicked the shuttle’s winged design.

This competition neared a climax in 2014 as NASA prepared to winnow the field to one company, or at most two, to move from the design phase into actual development. In May of that year Musk revealed his Crew Dragon spacecraft to the world with a characteristically showy event at the company’s headquarters in Hawthorne. As lights flashed and a smoke machine vented, Musk quite literally raised a curtain on a black-and-white capsule. He was most proud to reveal how Dragon would land. Never before had a spacecraft come back from orbit under anything but parachutes or gliding on wings. Not so with the new Dragon. It had powerful thrusters, called SuperDracos, that would allow it to land under its own power.

“You’ll be able to land anywhere on Earth with the accuracy of a helicopter,” Musk bragged. “Which is something that a modern spaceship should be able to do.”

A few weeks later I had an interview with John Elbon, a long-time engineer at Boeing who managed the company’s commercial program. As we talked, he tut-tutted SpaceX’s performance to date, noting its handful of Falcon 9 launches a year and inability to fly at a higher cadence. As for Musk’s little Dragon event, Elbon was dismissive.

“We go for substance,” Elbon told me. “Not pizzazz.”

Elbon’s confidence was justified. That spring the companies were finalizing bids to develop a spacecraft and fly six operational missions to the space station. These contracts were worth billions of dollars. Each company told NASA how much it needed for the job, and if selected, would receive a fixed price award for that amount. Boeing, SpaceX, and Sierra Nevada wanted as much money as they could get, of course. But each had an incentive to keep their bids low, as NASA had a finite budget for the program. Boeing had a solution, telling NASA it needed the entire Commercial Crew budget to succeed. Because a lot of decision-makers believed that only Boeing could safely fly astronauts, the company’s gambit very nearly worked.

Scoring the bids

The three competitors submitted initial bids to NASA in late January 2014, and after about six months of evaluations and discussions with the “source evaluation board,” submitted their final bids in July. During this initial round of judging, subject-matter experts scored the proposals and gathered to make their ratings. Sierra Nevada was eliminated because their overall scores were lower, and the proposed cost not low enough to justify remaining in the competition. This left Boeing and SpaceX, with likely only one winner.

“We really did not have the budget for two companies at the time,” said Phil McAlister, the NASA official at the agency’s headquarters in Washington overseeing the Commercial Crew program. “No one thought we were going to award two. I would always say, ‘One or more,’ and people would roll their eyes at me.”

Boeing's John Elbon, center, is seen in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida in 2012.

Boeing’s John Elbon, center, is seen in Orbiter Processing Facility-3 at NASA’s Kennedy Space Center in Florida in 2012.

NASA

The members of the evaluation board scored the companies based on three factors. Price was the most important consideration, given NASA’s limited budget. This was followed by “mission suitability,” and finally, “past performance.” These latter two factors, combined, were about equally weighted to price. SpaceX dominated Boeing on price.

Boeing asked for $4.2 billion, 60 percent more than SpaceX’s bid of $2.6 billion. The second category, mission suitability, assessed whether a company could meet NASA’s requirements and actually safely fly crew to and from the station. For this category, Boeing received an “excellent” rating, above SpaceX’s “very good.” The third factor, past performance, evaluated a company’s recent work. Boeing received a rating of “very high,” whereas SpaceX received a rating of “high.”

While this makes it appear as though the bids were relatively even, McAlister said the score differences in mission suitability and past performance were, in fact, modest. It was a bit like grades in school. SpaceX scored something like an 88, and got a B; whereas Boeing got a 91 and scored an A. Because of the significant difference in price, McAlister said, the source evaluation board assumed SpaceX would win the competition. He was thrilled, because he figured this meant that NASA would have to pick two companies, SpaceX based on price, and Boeing due to its slightly higher technical score. He wanted competition to spur both of the companies on.

In the room where it happened: When NASA nearly gave Boeing all the crew funding Read More »

navy-captains-don’t-like-abandoning-ship—but-with-starliner,-the-ship-left-them

Navy captains don’t like abandoning ship—but with Starliner, the ship left them

NASA astronauts Butch Wilmore and Suni Williams wave to their families, friends, and NASA officials on their way to the launch pad June 5 to board Boeing's Starliner spacecraft.

Enlarge / NASA astronauts Butch Wilmore and Suni Williams wave to their families, friends, and NASA officials on their way to the launch pad June 5 to board Boeing’s Starliner spacecraft.

NASA astronauts Butch Wilmore and Suni Williams are no strangers to time away from their families. Both are retired captains in the US Navy, served in war zones, and are veterans of previous six-month stays on the International Space Station.

When they launched to the space station on Boeing’s Starliner spacecraft on June 5, the astronauts expected to be home in a few weeks, or perhaps a month, at most. Their minimum mission duration was eight days, but NASA was always likely to approve a short extension. Wilmore and Williams were the first astronauts to soar into orbit on Boeing’s Starliner spacecraft, a milestone achieved some seven years later than originally envisioned by Boeing and NASA.

However, the test flight fell short of all of its objectives. Wilmore and Williams are now a little more than three months into what has become an eight-month mission on the station. The Starliner spacecraft was beset by problems, culminating in a decision last month by NASA officials to send the capsules back to Earth without the two astronauts. Rather than coming home on Starliner, Wilmore and Williams will return to Earth in February on a SpaceX Dragon spacecraft.

Grateful for options

On Friday, the two astronauts spoke with reporters for the first time since NASA decided they would stay in orbit until early 2025.

“It was trying at times,” Wilmore said. There were some tough times all the way through. Certainly, as the commander or pilot of your spacecraft, you don’t want to see it go off without you, but that’s where we wound up.”

Both astronauts are veteran Navy test pilots and have previous flights on space shuttles and Russian Soyuz spacecraft. Captains never want to abandon ship, but that’s not what happened with Starliner. Instead, their ship left them.

Williams said she and Wilmore watched Starliner’s departure from the space station from the lab’s multi-window cupola module last week. They kept busy with several tasks, such as monitoring the undocking and managing the space station’s systems during the dynamic phase of the departure.

“We were watching our spaceship fly away at that point in time,” Williams said. “I think it’s good we had some extra activities. Of course, we’re very knowledgeable about Starliner, so it was obvious what was happening at each moment.”

NASA’s top managers did not have enough confidence in Starliner’s safety after five thrusters temporarily failed as the spacecraft approached the space station in June. They weren’t ready to risk the lives of the two astronauts on Starliner when engineers weren’t convinced the same thrusters, or more, would function as needed during the trip home.

It turned out the suspect thrusters on Starliner worked after it departed the space station and headed for reentry on September 6. One thruster on Starliner’s crew module—different in design from the thrusters that previously had trouble—failed on the return journey. Investigating this issue is something Boeing and NASA engineers will add to their to-do list before the next Starliner flight, alongside the earlier problems of overheating thrusters and helium leaks.

“It’s a very risky business, and things do not always turn out the way you want,” Wilmore said. “Every single test flight, especially a first flight of a spacecraft or aircraft that’s ever occurred, has found issues …  90 percent of our training is preparing for the unexpected, and sometimes the actual unexpected goes beyond what you even think that could happen.”

Navy captains don’t like abandoning ship—but with Starliner, the ship left them Read More »

boeing-risks-losing-billions-as-33,000-workers-vote-to-strike

Boeing risks losing billions as 33,000 workers vote to strike

Union members cheer during a news conference following a vote count on the union contract at the IAM District 751 Main Union Hall in Seattle, Washington, US, on Thursday, Sept. 12, 2024.

Enlarge / Union members cheer during a news conference following a vote count on the union contract at the IAM District 751 Main Union Hall in Seattle, Washington, US, on Thursday, Sept. 12, 2024.

More than 33,000 unionized Boeing workers went on strike Friday, rejecting what they say were unfair terms of a deal the embattled aerospace company tentatively reached with their union.

The rejected deal tried and failed to win over workers by offering a 25 percent wage increase and promised to build Boeing’s next jet in the Puget Sound region in Washington, which Boeing claimed offered “job security for generations to come.”

But after International Association of Machinists and Aerospace Workers (IAM) District 751 president Jon Holden urged the union to accept the deal—which Boeing said was the “largest-ever general wage increase” in the company’s history—hundreds of Boeing employees immediately began resisting ahead of a Thursday vote that ultimately doomed the deal.

Instead of agreeing to a deal that compromised the desired 40 percent wage increases and eliminated workers’ annual bonuses, about 96 percent of workers voted to strike, The Washington Post reported. Rather than take what Boeing offered, workers seized rare leverage amid Boeing’s financial and production woes to pursue better terms.

“We’ve got a lot of leverage—why waste that?” Joe Philbin, a structures mechanic, told the Post ahead of the vote in a Seattle union hall Thursday. Philbin has only been with Boeing for six months but already wants changes in mandatory overtime rules.

An overwhelming majority of the union agreed that the deal was not good enough, so Holden told the gathered workers, “We strike at midnight.”

The statement incited loud cheers from workers who chanted, “Strike! Strike! Strike!”

Boeing workers have not walked out since 2008, when a 57-day strike cost Boeing about $1.5 billion, the Post reported. Analysts told Bloomberg that the current strike is estimated to last about 50 days, too, potentially costing Boeing between $3 billion and $3.5 billion.

The aerospace company cannot afford any work stoppage—let alone a strike from workers playing “a key role in assembling some of the company’s best-selling aircraft,” which the Post said could be the company’s “most disrupting challenge yet.” Analysts told the Post that on top of assembly delays in critical plants in Washington, an extended strike could hurt Boeing suppliers and Boeing’s market share.

Boeing’s spokesperson told Ars that the company is eager to get back to the bargaining table.

“The message was clear that the tentative agreement we reached with IAM leadership was not acceptable to the members,” Boeing’s spokesperson said. “We remain committed to resetting our relationship with our employees and the union, and we are ready to get back to the table to reach a new agreement.”

Why did Boeing workers reject the deal?

Boeing likely anticipated that the deal wasn’t good enough after Holden told The Seattle Times on Wednesday that workers would probably vote to strike.

Two days before that, Holden posted a message to workers after receiving “hundreds of messages and emails” expressing concerns about the tentative deal that he recommended that they accept.

“Emotions are high,” Holden acknowledged.

Holden told workers that it would have been impossible to respond to everyone individually and reassured them that the tentative deal was not binding.

“A Tentative Agreement is not certain or fixed, and it’s certainly not final,” Holden told workers. He further clarified that the deal simply represented the best terms that the union could get Boeing to agree to without a strike.

Boeing risks losing billions as 33,000 workers vote to strike Read More »

the-future-of-boeing’s-crewed-spaceflight-program-is-muddy-after-starliner’s-return

The future of Boeing’s crewed spaceflight program is muddy after Starliner’s return

10 years later … —

“The final chapter on Starliner has not been written yet.”

Boeing's uncrewed Starliner spaceraft backs away from the International Space Station moments after undocking on September 6, 2024.

Enlarge / Boeing’s uncrewed Starliner spaceraft backs away from the International Space Station moments after undocking on September 6, 2024.

NASA

Nearly a decade ago to the day, I stood in the international terminal of Houston’s main airport checking my phone. As I waited to board a flight for Moscow, an announcement from NASA was imminent, with the agency due to make its selections for private companies that would transport astronauts to the International Space Station.

Then, just before boarding the direct flight to Moscow, a news release from NASA popped into my inbox about its Commercial Crew Program. The space agency, under a fixed price agreement, agreed to pay Boeing $4.2 billion to develop the Starliner spacecraft; SpaceX would receive $2.6 billion for the development of its Crew Dragon vehicle.

At the time, the Space Shuttle had been retired for three years, and NASA’s astronauts had to fly to the International Space Station aboard the Soyuz spacecraft. “Today, we are one step closer to launching our astronauts from US soil on American spacecraft and ending the nation’s sole reliance on Russia by 2017,” NASA Administrator Charles Bolden said in the release.

I knew this only too well. As the space reporter for the Houston Chronicle, I was traveling with NASA officials to Russia to visit Star City, where astronauts train, and see Roscosmos’ mission control facilities. From there, we flew to Kazakhstan to tour the spaceport in Baikonur and observe the launch of the Expedition 41 crew to the space station. The mission included two Russian astronauts and NASA’s Butch Wilmore. I wrote about this as the fifth part of my Adrift series on the state of America’s space program.

A decade later, it all seems surreal. I cannot imagine, as I did a decade ago, standing near soldiers in Moscow watching a “Peace March” of thousands of protestors through the Russian capital city. There is no room for dissent in Russia today. The airport we used to fly from Moscow to Kazakhstan, Domodedovo, has been attacked by Ukrainian drones. I almost certainly can never go back to Russia, especially after being branded a “war criminal” by the country’s space boss.

But history turns in interesting ways. Ten years after his Soyuz flight from Kazakhstan, Wilmore launched from Florida on Boeing’s Starliner spacecraft. Last weekend, this Boeing spacecraft came back to Earth without Wilmore and his copilot Suni Williams on board. Here we were once again: Wilmore flying in space and me thinking and writing about the future of NASA’s human spaceflight programs.

I couldn’t help but wonder: After all that happened in the last decade, has the Commercial Crew Program been a success?

Boeing becomes a no-show

Commercial Crew was a bold bet by NASA that won the space agency many critics. Could private companies really step up and provide a service that only nations had before?

NASA’s two selections, Boeing and SpaceX, did not make that 2017 target for their initial crewed flights. For a few years, Congress lagged in funding the program, and during the second half of the 2010s, each of the companies ran into significant technical problems. SpaceX overcame serious issues with its parachutes and an exploding spacecraft in 2019 to triumphantly reach orbit in the summer of 2020 with its Demo-2 mission, flying NASA astronauts Doug Hurley and Bob Behnken to and from the space station.

Since then, SpaceX has completed seven operational missions to the station, carrying astronauts from the United States, Europe, Japan, Russia, the Middle East, and elsewhere into orbit. A crew from the eighth mission is on the station right now, and the ninth Crew Dragon mission will launch later this month to bring Wilmore and Williams back to Earth. Crew Dragon has been nothing short of a smashing success for SpaceX and the United States, establishing a vital lifeline at a time when—amid deteriorating relations between America and Russia—NASA reliance on Soyuz likely would have been untenable.

Starliner has faced a more difficult road. Its first uncrewed test flight in late 2019 was cut short early after serious software problems. Afterward, NASA designated the flight as a “high visibility close call” and said Boeing would need to fly a second uncrewed test flight. This mission in 2022 was more successful, but lingering concerns and issues with flammable tape and parachutes delayed the first crew flight until June of this year. The fate of Starliner’s third flight this summer, and its intermittently failing thrusters that ultimately led to its crew needing an alternative ride back to Earth, has been well documented.

The future of Boeing’s crewed spaceflight program is muddy after Starliner’s return Read More »

leaving-behind-its-crew,-starliner-departs-space-station-and-returns-to-earth

Leaving behind its crew, Starliner departs space station and returns to Earth

It worked —

“We will review the data and determine the next steps for the program,” says Boeing’s Starliner manager.

Boeing's Starliner spacecraft after landing Friday night at White Sands Space Harbor, New Mexico.

Enlarge / Boeing’s Starliner spacecraft after landing Friday night at White Sands Space Harbor, New Mexico.

Boeing

Boeing’s Starliner spacecraft sailed to a smooth landing in the New Mexico desert Friday night, an auspicious end to an otherwise disappointing three-month test flight that left the capsule’s two-person crew stuck in orbit until next year.

Cushioned by airbags, the Boeing crew capsule descended under three parachutes toward an on-target landing at 10: 01 pm local time Friday (12: 01 am EDT Saturday) at White Sands Space Harbor, New Mexico. From the outside, the landing appeared just as it would have if the spacecraft brought home NASA astronauts Butch Wilmore and Suni Williams, who became the first people to launch on a Starliner capsule on June 5.

But Starliner’s cockpit was empty as it flew back to Earth Friday night. Last month, NASA managers decided to keep Wilmore and Williams on the International Space Station (ISS) until next year after agency officials determined it was too risky for the astronauts to return to the ground on Boeing’s spaceship. Instead of coming home on Starliner, Wilmore and Williams will fly back to Earth on a SpaceX Dragon spacecraft in February. NASA has incorporated the Starliner duo into the space station’s long-term crew.

The Starliner spacecraft began the journey home by backing away from its docking port at the space station at 6: 04 pm EDT (22: 04 UTC), one day after astronauts closed hatches to prepare for the ship’s departure. The capsule fired thrusters to quickly back away from the complex, setting up for a deorbit burn to guide Starliner on a trajectory toward its landing site. Then, Starliner jettisoned its disposable service module to burn up over the Pacific Ocean, while the crew module, with a vacant cockpit, took aim on New Mexico.

After streaking through the atmosphere over the Pacific Ocean and Mexico, Starliner deployed three main parachutes to slow its descent, then a ring of six airbags inflated around the bottom of the spacecraft to dampen the jolt of touchdown. This was the third time a Starliner capsule has flown in space, and the second time the spacecraft fell short of achieving all of its objectives.

Not the desired outcome

“I’m happy to report Starliner did really well today in the undock, deorbit, and landing sequence,” said Steve Stich, manager of NASA’s commercial crew program, which manages a contract worth up to $4.6 billion for Boeing to develop, test, and fly a series of Starliner crew missions to the ISS.

While officials were pleased with Starliner’s landing, the celebration was tinged with disappointment.

“From a human perspective, all of us feel happy about the successful landing, but then there’s a piece of us that we wish it would have been the way we had planned it,” Stich said. “We had planned to have the mission land with Butch and Suni onboard. I think there are, depending on who you are on the team, different emotions associated with that, and I think it’s going to take a little time to work through that.”

Nevertheless, Stich said NASA made the right call last month when officials decided to complete the Starliner test flight without astronauts in the spacecraft.

“We made the decision to have an uncrewed flight based on what we knew at the time, and based on our knowledge of the thrusters and based on the modeling that we had,” Stich said. “If we’d had a model that would have predicted what we saw tonight perfectly, yeah, it looks like an easy decision to go say, ‘We could have had a crew tonight.’ But we didn’t have that.”

Boeing’s Starliner managers insisted the ship was safe to bring the astronauts home. It might be tempting to conclude the successful landing Friday night vindicated Boeing’s views on the thruster problems. However, he spacecraft’s propulsion system, provided by Aerojet Rocketdyne, clearly did not work as intended during the flight. NASA had the option of bringing Wilmore and Williams back to Earth on a different, flight-proven spacecraft, so they took it.

“It’s awfully hard for the team,” Stich said. “It’s hard for me, when we sit here and have a successful landing, to be in that position. But it was a test flight, and we didn’t have confidence, with certainty, of the thruster performance.”

In this infrared view, Starliner descends under its three main parachutes moments before touchdown at White Sands Space Harbor, New Mexico.

Enlarge / In this infrared view, Starliner descends under its three main parachutes moments before touchdown at White Sands Space Harbor, New Mexico.

NASA

As Starliner approached the space station in June, five of 28 control thrusters on Starliner’s service module failed, forcing Wilmore to take manual control as ground teams sorted out the problem. Eventually, engineers recovered four of the five thrusters, but NASA’s decision makers were unable to convince themselves the same problem wouldn’t reappear, or get worse, when the spacecraft departed the space station and headed for reentry and landing.

Engineers later determined the control jets lost thrust due to overheating, which can cause Teflon seals in valves to swell and deform, starving the thrusters of propellant. Telemetry data beamed back to the mission controllers from Starliner showed higher-than-expected temperatures on two of the service module thrusters during the flight back to Earth Friday night, but they continued working.

Ground teams also detected five small helium leaks on Starliner’s propulsion system soon after its launch in June. NASA and Boeing officials were aware of one of the leaks before the launch, but decided to go ahead with the test flight. Starliner was still leaking helium when the spacecraft undocked from the station Friday, but the leak rate remained within safety tolerances, according to Stich.

A couple of fresh technical problems cropped up as Starliner cruised back to Earth. One of 12 control jets on the crew module failed to ignite at any time during Starliner’s flight home. These are separate thrusters from the small engines that caused trouble earlier in the Starliner mission. There was also a brief glitch in Starliner’s navigation system during reentry.

Where to go from here?

Three NASA managers, including Stich, took questions from reporters in a press conference early Saturday following Starliner’s landing. Two Boeing officials were also supposed to be on the panel, but they canceled at the last minute. Boeing didn’t explain their absence, and the company has not made any officials available to answer questions since NASA chose to end the Starliner test flight without the crew aboard.

“We view the data and the uncertainty that’s there differently than Boeing does,” said Jim Free, NASA’s associate administrator, in an August 24 press conference announcing the agency’s decision on how to end the Starliner test flight. It’s unusual for NASA officials to publicly discuss how their opinions differ from those of their contractors.

Joel Montalbano, NASA’s deputy associate administrator for space operations, said Saturday that Boeing deferred to the agency to discuss the Starliner mission in the post-landing press conference.

Here’s the only quote from a Boeing official on Starliner’s return to Earth. It came in the form of a three-paragraph written statement Boeing emailed to reporters about a half-hour after Starliner’s landing: “I want to recognize the work the Starliner teams did to ensure a successful and safe undocking, deorbit, re-entry and landing,” said Mark Nappi, vice president and program manager of Boeing’s commercial crew program. “We will review the data and determine the next steps for the program.”

Nappi’s statement doesn’t answer one of the most important questions reporters would have asked anyone from Boeing if they participated in Saturday morning’s press conference: Does Boeing still have a long-term commitment to the Starliner program?

So far, the only indications of Boeing’s future plans for Starliner have come from second-hand anecdotes relayed by NASA officials. Boeing has been silent on the matter. The company has reported nearly $1.6 billion in financial charges to pay for previous delays and cost overruns on the Starliner program, and Boeing will again be on the hook to pay to fix the problems Starliner encountered in space over the last three months.

Montalbano said Boeing’s Starliner managers met with ground teams at mission control in Houston following the craft’s landing. “The Boeing managers came into the control room and congratulated the team, talked to the NASA team, so Boeing is committed to continue their work with us,” he said.

Boeing's Starliner spacecraft fires thrusters during departure from the International Space Station on Friday.

Enlarge / Boeing’s Starliner spacecraft fires thrusters during departure from the International Space Station on Friday.

NASA

NASA isn’t ready to give up on Starliner. A fundamental tenet of NASA’s commercial crew program is to foster the development of two independent vehicles to ferry astronauts to and from the International Space Station, and eventually commercial outposts in low-Earth orbit. NASA awarded multibillion-dollar contracts to Boeing and SpaceX in 2014 to complete development of their Starliner and Crew Dragon spaceships.

SpaceX’s Dragon started flying astronauts in 2020. NASA would like to have another US spacecraft for crew rotation flights to support the ISS. If Boeing had more success with this Starliner test flight, NASA expected to formally certify the spacecraft for operational crew flights beginning next year. Once that happens, Starliner will enter a rotation with SpaceX’s Dragon to transport crews to and from the station in six-month increments.

Stich said Saturday that NASA has not determined whether the agency will require Boeing launch another Starliner test flight before certifying the spacecraft for regular crew rotation missions. “It’ll take a little time to determine the path forward, but today we saw the vehicle perform really well,” he said.

On to Starliner-1?

But some of Stich’s other statements Saturday suggested NASA would like to proceed with certifying Starliner and flying the next mission with a full crew complement of four astronauts. NASA calls Boeing’s first operational crew mission Starliner-1. It’s the first of at least three and potentially up to six crew rotation missions on Boeing’s contract.

“It’s great to have the spacecraft back, and we’re now focused on Starliner-1,” Stich said.

Before that happens, NASA and Boeing engineers must resolve the thruster problems and helium leaks that plagued the test flight this summer. Stich said teams are studying several ways to improve the reliability of Starliner’s thrusters, including hardware modifications and procedural changes. This will probably push back the next crew flight of Starliner, whether it’s Starliner-1 or another test flight, until the end of next year or 2026, although NASA officials have not laid out a schedule.

The overheating thrusters are located inside four doghouse-shaped propulsion pods around the perimeter of Starliner’s service module. It turns out the doghouses retain heat like a thermos—something NASA and Boeing didn’t fully appreciate before this mission—and the thrusters don’t have time to cool down when the spacecraft fires its control jets in rapid pulses. It might help if Boeing removes some of the insulating thermal blankets from the doghouses, Stich said.

The easiest method of resolving the problem of Starliner’s overheating thrusters would be to change the rate and duration of thruster firings.

“What we would like to do is try not to change the thruster. I think that is the best path,” Stich said. “There thrusters have shown resilience and have shown that they perform well, as long as we keep their temperatures down and don’t fire them in a manner that causes the temperatures to go up.”

There’s one thing from this summer’s test flight that might, counterintuitively, help NASA certify the Starliner spacecraft to begin operational flights with its next mission. Rather than staying at the space station for eight days, Starliner remained docked at the research lab for three months, half of the duration of a full-up crew rotation flight. Despite the setbacks, Stich estimated the test flight achieved about 85 to 90 percent of its objectives.

“There’s a lot of learning that happens in that three months that is invaluable for an increment mission,” Stich said. “So, in some ways, the mission overachieved some objectives, in terms of being there for extra time. Not having the crew onboard, obviously, there are some things that we lack in terms of Butch and Suni’s test pilot expertise, and how the vehicle performed, what they saw in the cockpit. We won’t have that data, but we still have the wealth of data from the spacecraft itself, so that will go toward the mission objectives and the certification.”

Leaving behind its crew, Starliner departs space station and returns to Earth Read More »

after-another-boeing-letdown,-nasa-isn’t-ready-to-buy-more-starliner-missions

After another Boeing letdown, NASA isn’t ready to buy more Starliner missions

Boeing's Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket before liftoff in June to begin the Crew Flight Test.

Enlarge / Boeing’s Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket before liftoff in June to begin the Crew Flight Test.

NASA is ready for Boeing’s Starliner spacecraft, stricken with thruster problems and helium leaks, to leave the International Space Station as soon as Friday, wrapping up a disappointing test flight that has clouded the long-term future of the Starliner program.

Astronauts Butch Wilmore and Suni Williams, who launched aboard Starliner on June 5, closed the spacecraft’s hatch Thursday in preparation for departure Friday. But it wasn’t what they envisioned when they left Earth on Starliner three months ago. Instead of closing the hatch from a position in Starliner’s cockpit, they latched the front door to the spacecraft from the space station’s side of the docking port.

The Starliner spacecraft is set to undock from the International Space Station at 6: 04 pm EDT (22: 04 UTC) Friday. If all goes according to plan, Starliner will ignite its braking rockets at 11: 17 pm EDT (03: 17 UTC) for a minute-long burn to target a parachute-assisted, airbag-cushioned landing at White Sands Space Harbor, New Mexico, at 12: 03 am EDT (04: 03 UTC) Saturday.

The Starliner mission set to conclude this weekend was the spacecraft’s first test flight with astronauts, running seven years behind Boeing’s original schedule. But due to technical problems with the spacecraft, it won’t come home with the two astronauts who flew it into orbit back in June, leaving some of the test flight’s objectives incomplete.

This outcome is, without question, a setback for NASA and Boeing, which must resolve two major problems in Starliner’s propulsion system—supplied by Aerojet Rocketdyne—before the capsule can fly with people again. NASA officials haven’t said whether they will require Boeing to launch another Starliner test flight before certifying the spacecraft for the first of up to six operational crew missions on Boeing’s contract.

A noncommittal from NASA

For over a decade, the space agency has worked with Boeing and SpaceX to develop two independent vehicles to ferry astronauts to and from the International Space Station (ISS). SpaceX launched its first Dragon spacecraft with astronauts in May 2020, and six months later, NASA cleared SpaceX to begin flying regular six-month space station crew rotation missions.

Officially, NASA has penciled in Starliner’s first operational mission for August 2025. But the agency set that schedule before realizing Boeing and Aerojet Rocketdyne would need to redesign seals and perhaps other elements in Starliner’s propulsion system.

No one knows how long that will take, and NASA hasn’t decided if it will require Boeing to launch another test flight before formally certifying Starliner for operational missions. If Starliner performs flawlessly after undocking and successfully lands this weekend, perhaps NASA engineers can convince themselves Starliner is good to go for crew rotation flights once Boeing resolves the thruster problems and helium leaks.

In any event, the schedule for launching an operational Starliner crew flight in less than a year seems improbable. Aside from the decision on another test flight, the agency also must decide whether it will order any more operational Starliner missions from Boeing. These “post-certification missions” will transport crews of four astronauts between Earth and the ISS, orbiting roughly 260 miles (420 kilometers) above the planet.

NASA has only given Boeing the “Authority To Proceed” for three of its six potential operational Starliner missions. This milestone, known as ATP, is a decision point in contracting lingo where the customer—in this case, NASA—places a firm order for a deliverable. NASA has previously said it awards these task orders about two to three years prior to a mission’s launch.

Josh Finch, a NASA spokesperson, told Ars that the agency hasn’t made any decisions on whether to commit to any more operational Starliner missions from Boeing beyond the three already on the books.

“NASA’s goal remains to certify the Starliner system for crew transportation to the International Space Station,” Finch said in a written response to questions from Ars. “NASA looks forward to its continued work with Boeing to complete certification efforts after Starliner’s uncrewed return. Decisions and timing on issuing future authorizations are on the work ahead.”

This means NASA’s near-term focus is on certifying Starliner so that Boeing can start executing its commercial crew contract. The space agency hasn’t determined when or if it will authorize Boeing to prepare for any Starliner missions beyond the three already on the books.

When it awarded commercial crew contracts to SpaceX and Boeing in 2014, NASA pledged to buy at least two operational crew flights from each company. The initial contracts from a decade ago had options for as many as six crew rotation flights to the ISS after certification.

Since then, NASA has extended SpaceX’s commercial crew contract to cover as many as 14 Dragon missions with astronauts, and SpaceX has already launched eight of them. The main reason for this contract extension was to cover NASA’s needs for crew transportation after delays with Boeing’s Starliner, which was originally supposed to alternate with SpaceX’s Dragon for human flights every six months.

After another Boeing letdown, NASA isn’t ready to buy more Starliner missions Read More »

nasa-wants-starliner-to-make-a-quick-getaway-from-the-space-station

NASA wants Starliner to make a quick getaway from the space station

WSSHing for success —

Starliner is set to land at White Sands Space Harbor in New Mexico shortly after midnight.

Boeing's Starliner spacecraft is set to undock from the International Space Station on Friday evening.

Enlarge / Boeing’s Starliner spacecraft is set to undock from the International Space Station on Friday evening.

NASA

Boeing’s Starliner spacecraft will gently back away from the International Space Station Friday evening, then fire its balky thrusters to rapidly depart the vicinity of the orbiting lab and its nine-person crew.

NASA asked Boeing to adjust Starliner’s departure sequence to get away from the space station faster and reduce the workload on the thrusters to reduce the risk of overheating, which caused some of the control jets to drop offline as the spacecraft approached the outpost for docking in June.

The action begins at 6: 04 pm EDT (22: 04 UTC) on Friday, when hooks in the docking mechanism connecting Starliner with the International Space Station (ISS) will open, and springs will nudge the spacecraft away its mooring on the forward end of the massive research complex.

Around 90 seconds later, a set of forward-facing thrusters on Starliner’s service module will fire in a series of 12 pulses over a few minutes to drive the spacecraft farther away from the space station. These maneuvers will send Starliner on a trajectory over the top of the ISS, then behind it until it is time for the spacecraft to perform a deorbit burn at 11: 17 pm EDT (03: 17 UTC) to target landing at White Sands Space Harbor, New Mexico, shortly after midnight EDT (10 pm local time at White Sands).

How to watch, and what to watch for

The two videos embedded below will show NASA TV’s live coverage of the undocking and landing of Starliner.

Starliner is leaving its two-person crew behind on the space station after NASA officials decided last month they did not have enough confidence in the spacecraft’s reaction control system (RCS) thrusters, used to make exact changes to the capsule’s trajectory and orientation in orbit. Five of the 28 RCS thrusters on Starliner’s service module failed during the craft’s rendezvous with the space station three months ago. Subsequent investigations showed overheating could cause Teflon seals in a poppet valve to swell, restricting the flow of propellant to the thrusters.

Engineers recovered four of the five thrusters after they temporarily stopped working, but NASA officials couldn’t be sure the thrusters would not overheat again on the trip home. NASA decided it was too risky for Starliner to come home with astronauts Butch Wilmore and Suni Williams, who launched on Boeing’s crew test flight on June 5, becoming the first people to fly on the commercial capsule. They will remain aboard the station until February, when they will return to Earth on a SpaceX Dragon spacecraft.

The original flight plan, had Wilmore and Williams been aboard Starliner for the trip home, called for the spacecraft to make a gentler departure from the ISS, allowing engineers to fully check out the performance of its navigation sensors and test the craft’s ability to loiter in the vicinity of the station for photographic surveys of its exterior.

“In this case, what we’re doing is the break-out burn, which will be a series of 12 burns, each not very large, about 0.1 meters per second (0.2 mph) and that’s just to take the Starliner away from the station, and then immediately start going up and away, and eventually it’ll curve around to the top and deorbit from above the station a few orbits later,” said Anthony Vareha, NASA’s flight director overseeing ISS operations during Starliner’s undocking sequence.

Astronauts won’t be inside Starliner’s cockpit to take manual control in the event of a major problem, so NASA managers want the spacecraft to get away from the space station as quickly as possible.

On this path, Starliner will exit the so-called approach ellipsoid, a 2.5-by-1.25-by-1.25-mile (4-by-2-by-2-kilometer) invisible boundary around the orbiting laboratory, about 20 to 25 minutes after undocking, NASA officials said. That’s less than half the time Starliner would normally take to leave the vicinity of the ISS.

“It’s a quicker way to get away from the station, with less stress on the thrusters,” said Steve Stich, NASA’s commercial crew program manager. “Essentially, once we open the hooks, the springs will push Starliner away and then we’ll do some really short thruster firings to put us on a trajectory that will take us above the station and behind, we’ll be opening to a nice range to where we can execute the deorbit burn.”

In the unlikely event of a more significant series of thruster failures, the springs that push Starliner away from the station should be enough to ensure there’s no risk of collision, according to Vareha.

“Then, after that, we really are going to just stay in some very benign attitudes and not fire the the thrusters very much at all,” Stich said.

Starliner will need to use the RCS thrusters again to point itself in the proper direction to fire four larger rocket engines for the deorbit burn. Once this burn is complete, the RCS thrusters will reorient the spacecraft to jettison the service module to burn up in the atmosphere. The reusable crew module relies on a separate set of thrusters during reentry.

Finally, the capsule will approach the landing zone in New Mexico from the southwest, flying over the Pacific Ocean and Mexico before deploying three main parachutes and airbags to cushion its landing at White Sands. Boeing and NASA teams there will meet the spacecraft and secure it for a road voyage back to Kennedy Space Center in Florida for refurbishment.

Meanwhile, engineers must resolve the causes of the thruster problems and helium leaks that plagued the Starliner test flight before it can fly astronauts again.

NASA wants Starliner to make a quick getaway from the space station Read More »

boeing-will-try-to-fly-its-troubled-starliner-capsule-back-to-earth-next-week

Boeing will try to fly its troubled Starliner capsule back to Earth next week

Destination desert —

The two astronauts who launched on Starliner will stay behind on the International Space Station.

Boeing's Starliner spacecraft undocks from the International Space Station at the conclusion of an unpiloted test flight in May 2022.

Enlarge / Boeing’s Starliner spacecraft undocks from the International Space Station at the conclusion of an unpiloted test flight in May 2022.

NASA

NASA and Boeing are proceeding with final preparations to undock the Starliner spacecraft from the International Space Station next Friday, September 6, to head for landing at White Sands Space Harbor in southern New Mexico.

Astronauts Butch Wilmore and Suni Williams, who were supposed to return to Earth inside Starliner, will remain behind on the space station after NASA decided last week to conclude the Boeing test flight without its crew on board. NASA officials decided it was too risky to put the astronauts on Starliner after the spacecraft suffered thruster failures during its flight to the space station in early June.

Instead, Wilmore and Williams will come home on a SpaceX Dragon capsule no earlier than February, extending their planned stay on the space station from eight days to eight months. Flying on autopilot, the Starliner spacecraft is scheduled to depart the station at approximately 6: 04 pm EDT (22: 04 UTC) on September 6. The capsule will fire its engines to drop out of orbit and target a parachute-assisted landing in New Mexico at 12: 03 am EDT (04: 03 UTC) on September 7, NASA said in a statement Thursday.

NASA officials completed the second part of a two-day Flight Readiness Review on Thursday to clear the Starliner spacecraft for undocking and landing. However, there are strict weather rules for landing a Starliner spacecraft, so NASA and Boeing managers will decide next week whether to proceed with the return next Friday night or wait for better conditions at the White Sands landing zone.

Over the last few days, flight controllers updated parameters in Starliner’s software to handle a fully autonomous return to Earth without inputs from astronauts flying in the cockpit, NASA said. Boeing has flown two unpiloted Starliner test flights using the same type of autonomous reentry and landing operations. This mission, called the Crew Flight Test (CFT), was the first time astronauts launched into orbit inside a Starliner spacecraft, and was expected to pave the way for future operational missions to rotate four-person crews to and from the space station.

With the Starliner spacecraft unable to complete its test flight as intended, there are fundamental questions about the future of Boeing’s commercial crew program. NASA Administrator Bill Nelson said last week that Boeing’s new CEO, Kelly Ortberg, told him the aerospace company remained committed to Starliner. However, Boeing will be on the hook to pay for the cost of resolving problems with overheating thrusters and helium leaks that hamstrung the CFT mission. Boeing hasn’t made any public statements about the long-term future of the Starliner program since NASA decided to pull its astronauts off the spacecraft for its return to Earth.

Preparing for a contingency

NASA is clearly more comfortable with returning Wilmore and Williams to Earth inside SpaceX’s Dragon capsule, but the change disrupts crew operations at the space station. This week, astronauts have been reconfiguring the interior of a Dragon spacecraft currently docked at the outpost to support six crew members in the event of an emergency evacuation.

With Starliner leaving the space station next week, Dragon will become the lifeboat for Wilmore and Williams. If a fire, a collision with space junk, a medical emergency, or something else forces the crew to leave the complex, the Starliner astronauts will ride home on makeshift seats positioned under the four regular seats inside Dragon, where crews typically put cargo during launch and landing.

At least one of the Starliner astronauts would have to come home without a spacesuit to protect them if the cabin of the Dragon spacecraft depressurized on the descent. This has never happened on a Dragon mission before, but astronauts wear SpaceX-made pressure suits to mitigate the risk. The four astronauts who launched on Dragon have their suits, and NASA officials said a spare SpaceX suit already on the space station fit one of the Starliner astronauts, but they didn’t identify which one.

A pressure suit for the other Starliner crew member will launch on the next Dragon spacecraft—on the Crew-9 mission—set for liftoff on a SpaceX Falcon 9 rocket no earlier than September 24. Starliner’s troubles have also disrupted plans for the Crew-9 mission.

On Friday, NASA announced it would remove two astronauts from the Crew-9 mission, including its commander, Zena Cardman, who is a spaceflight rookie. Veteran astronaut Nick Hague will move from the pilot’s seat to take over as Crew-9 commander. Russian cosmonaut Aleksandr Gorbunov will join him.

NASA and Russia’s space agency, Roscosmos, have an agreement to launch Russian cosmonauts on Dragon missions and US astronauts on Russian Soyuz flights to the station. In exchange for NASA providing a ride for Gorbunov, NASA astronaut Don Pettit will fly to the space station on a Soyuz spacecraft next month.

The so-called “seat swap” arrangement ensures that, even if Dragon or Soyuz were grounded, there is always at least one US astronaut and one Russian cosmonaut on the station overseeing each partner’s segment of the outpost, maintaining propulsion, power generating, pointing control, thermal control, and other critical capabilities to keep the lab operational.

Boeing will try to fly its troubled Starliner capsule back to Earth next week Read More »

nasa’s-starliner-decision-was-the-right-one,-but-it’s-a-crushing-blow-for-boeing

NASA’s Starliner decision was the right one, but it’s a crushing blow for Boeing

Falling short —

It’s unlikely Boeing can fly all six of its Starliner missions before retirement of the ISS in 2030.

A Starliner spacecraft mounted on top of an Atlas V rocket before an unpiloted test flight in 2022.

Enlarge / A Starliner spacecraft mounted on top of an Atlas V rocket before an unpiloted test flight in 2022.

Ten years ago next month NASA announced that Boeing, one of the agency’s most experienced contractors, won the lion’s share of government money available to end the agency’s sole reliance on Russia to ferry its astronauts to and from low-Earth orbit.

At the time, Boeing won $4.2 billion from NASA to complete development of the Starliner spacecraft and fly a minimum of two, and potentially up to six, operational crew flights to rotate crews between Earth and the International Space Station (ISS). SpaceX won a $2.6 billion contract for essentially the same scope of work.

A decade later the Starliner program finds itself at a crossroads after Boeing learned it will not complete the spacecraft’s first Crew Flight Test with astronauts onboard. NASA formally decided Saturday that Butch Wilmore and Suni Williams, who launched on the Starliner capsule June 5, will instead return to Earth inside a SpaceX Crew Dragon spacecraft. Put simply, NASA isn’t confident enough in Boeing’s spacecraft after it suffered multiple thrusters failures and helium leaks on the way to the ISS.

So where does this leave Boeing with its multibillion contract? Can the company fulfill the breadth of its commercial crew contract with NASA before the space station’s scheduled retirement in 2030? It now seems that there is little chance of Boeing flying six more Starliner missions without a life extension for the ISS. Tellingly, perhaps, NASA has only placed firm orders with Boeing for three Starliner flights once the agency certifies the spacecraft for operational use.

Boeing’s bottom line

Although Boeing did not make an official statement Saturday on its long-term plans for Starliner, NASA Administrator Bill Nelson told reporters he received assurances from Boeing’s new CEO, Kelly Ortberg, that the company remains committed to the commercial crew program. And it will take a significant commitment from Boeing to see it through. Under the terms of its fixed price contract with NASA, the company is on the hook to pay for any expenses to fix the thruster and helium leak problems and get Starliner flying again.

Boeing has already reported $1.6 billion in charges on its financial statements to pay for delays and cost overruns on the Starliner program. That figure will grow as the company will likely need to redesign some elements in the spacecraft’s propulsion system to remedy the problems encountered on the Crew Flight Test (CFT) mission. NASA has committed $5.1 billion to Boeing for the Starliner program, and the agency has already paid out most of that funding.

Boeing's Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

Enlarge / Boeing’s Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

The next step for Starliner remains unclear, and we’ll assess that in more detail later in the story. Had the Starliner test flight ended as expected, with its crew inside, NASA targeted no earlier than August 2025 for Boeing to launch the first of its six operational crew rotation missions to the space station. In light of Saturday’s decision, there’s a high probability Starliner won’t fly with astronauts again until at least 2026.

Starliner safely delivered astronauts Butch Wilmore and Suni Williams to the space station on June 6, a day after their launch from Cape Canaveral Space Force Station, Florida. But five of the craft’s 28 reaction control system thrusters overheated and failed as it approached the outpost. After the failures on the way to the space station, NASA’s engineers were concerned Starliner might suffer similar problems, or worse, when the control jets fired to guide Starliner on the trip back to Earth.

On Saturday, senior NASA leaders decided it wasn’t worth the risk. The two astronauts, who originally planned for an eight-day stay at the station, will now spend eight months on the orbiting research lab until they come back to Earth with SpaceX.

If it’s not a trust problem, is it a judgement issue?

Boeing managers had previously declared Starliner was safe enough to bring Wilmore and Williams home. Mark Nappi, Boeing’s Starliner program manager, regularly appeared to downplay the seriousness of the thruster issues during press conferences throughout Starliner’s nearly three-month mission.

So why did NASA and Boeing engineers reach different conclusions? “I think we’re looking at the data and we view the data and the uncertainty that’s there differently than Boeing does,” said Jim Free, NASA’s associate administrator, and the agency’s most senior civil servant. “It’s not a matter of trust. It’s our technical expertise and our experience that we have to balance. We balance risk across everything, not just Starliner.”

The people at the top of NASA’s decision-making tree have either flown in space before, or had front-row seats to the calamitous decision NASA made in 2003 to not seek more data on the condition of space shuttle Columbia’s left wing after the impact of a block of foam from the shuttle’s fuel tank during launch. This led to the deaths of seven astronauts, and the destruction of Columbia during reentry over East Texas. A similar normalization of technical problems, and a culture of stifling dissent, led to the loss of space shuttle Challenger in 1986.

“We lost two space shuttles as a result there not being a culture in which information could come forward,” Nelson said Saturday. “We have been very solicitous of all of our employees that if you have some objection, you come forward. Spaceflight is risky, even at its safest, and even at its most routine. And a test flight by nature is neither safe nor routine. So the decision to keep Butch and Suni aboard the International Space Station and bring the Starliner home uncrewed is the result of a commitment to safety.”

Now, it seems that culture may truly have changed. With SpaceX’s Dragon spacecraft available to give Wilmore and Williams a ride home, this ended up being a relatively straightforward decision. Ken Bowersox, head of NASA’s space operations mission directorate, said the managers polled for their opinion all supported bringing the Starliner spacecraft back to Earth without anyone onboard.

However, NASA and Boeing need to answer for how the Starliner program got to this point. The space agency approved the launch of the Starliner CFT mission in June despite knowing the spacecraft had a helium leak in its propulsion system. Those leaks multiplied once Starliner arrived in orbit, and are a serious issue on their own that will require corrective actions before the next flight. Ultimately, the thruster problems superseded the seriousness of the helium leaks, and this is where NASA and Boeing are likely to face the most difficult questions moving forward.

NASA astronauts Butch Wilmore and Suni Williams aboard the International Space Station.

Enlarge / NASA astronauts Butch Wilmore and Suni Williams aboard the International Space Station.

Boeing’s previous Starliner mission, known as Orbital Flight Test-2 (OFT-2), successfully launched in 2022 and docked with the space station, later coming back to Earth for a parachute-assisted landing in New Mexico. The test flight achieved all of its major objectives, setting the stage for the Crew Flight Test mission this year. But the spacecraft suffered thruster problems on that flight, too.

Several of the reaction control system thrusters stopped working as Starliner approached the space station on the OFT-2 mission, and another one failed on the return leg of the mission. Engineers thought they fixed the problem by introducing what was essentially a software fix to adjust timing and tolerance settings on sensors in the propulsion system, supplied by Aerojet Rocketdyne.

That didn’t work. The problem lay elsewhere, as engineers discovered during testing this summer, when Starliner was already in orbit. Thruster firings at White Stands, New Mexico, revealed a small Teflon seal in a valve can bulge when overheated, restricting the flow of oxidizer propellant to the thruster. NASA officials concluded there is a chance, however small, that the thrusters could overheat again as Starliner departs the station and flies back to Earth—or perhaps get worse.

“We are clearly operating this thruster at a higher temperature, at times, than it was designed for,” said Steve Stich, NASA’s commercial crew program manager. “I think that was a factor, that as we started to look at the data a little bit more carefully, we’re operating the thruster outside of where it should be operated at.”

NASA’s Starliner decision was the right one, but it’s a crushing blow for Boeing Read More »

nasa-not-comfortable-with-starliner-thrusters,-so-crew-will-fly-home-on-dragon

NASA not comfortable with Starliner thrusters, so crew will fly home on Dragon

Boeing is going home empty handed —

“I would say the White Sands testing did give us a surprise.”

Photos of Crew Dragon relocation on the International Space Station.

Enlarge / Crew Dragon approaches the International Space Station

NASA TV

Following weeks of speculation, NASA finally made it official on Saturday: two astronauts who flew to the International Space Station on Boeing’s Starliner spacecraft in June will not return home on that vehicle. Instead, the agency has asked SpaceX to use its Crew Dragon spacecraft to fly astronauts Butch Wilmore and Suni Williams back to Earth.

“NASA has decided that Butch and Suni will return with Crew-9 next February,” said NASA Administrator Bill Nelson at the outset of a news conference on Saturday afternoon at Johnson Space Center.

In a sign of the gravity surrounding the agency’s decision, both Nelson and NASA’s deputy administrator, Pam Melroy, attended a Flight Readiness Review meeting held Saturday in Houston. During that gathering of the agency’s senior officials, an informal “go/no go” poll was taken. Those present voted unanimously for Wilmore and Williams to return to Earth on Crew Dragon. The official recommendation of the Commercial Crew Program was the same, and Nelson accepted it.

Therefore, Boeing’s Starliner spacecraft will undock from the station early next month—the tentative date, according to a source, is September 6—and attempt to make an autonomous return to Earth and land in a desert in the southwestern United States.

Then, no earlier than September 24, a Crew Dragon spacecraft will launch with two astronauts (NASA has not named the two crew members yet) to the space station with two empty seats. Wilmore and Williams will join these two Crew-9 astronauts for their previously scheduled six-month increment on the space station. All four will then return to Earth on the Crew Dragon vehicle.

Saturday’s announcement has big implications for Boeing, which entered NASA’s Commercial Crew Program more than a decade ago and lent legitimacy to NASA’s efforts to pay private companies for transporting astronauts to the International Space Station. The company’s failure—and despite the encomiums from NASA officials during Saturday’s news conference, this Starliner mission is a failure—will affect Boeing’s future in spaceflight. Ars will have additional coverage of Starliner’s path forward later today.

Never could get comfortable with thruster issues

For weeks after Starliner’s arrival at the space station in early June, officials from Boeing and NASA expressed confidence in the ability of the spacecraft to fly Wilmore and Williams home. They said they just needed to collect a little more data on the performance of the vehicle’s reaction control system thrusters. Five of these 28 small thrusters that guide Starliner failed during the trip to the space station.

Engineers from Boeing and NASA tested the performance of these thrusters at a facility in White Sands, New Mexico, in July. Initially, the engineers were excited to replicate the failures observed during Starliner’s transit to the space station. (Replicating failures is a critical step to understanding the root cause of a hardware problem.)

However, what NASA found after taking apart the failed thrusters was concerning, said the chief of NASA’s Commercial Crew Program, Steve Stich.

“I would say the White Sands testing did give us a surprise,” Stich said Saturday. “It was this piece of Teflon that swells up and got in the flow path and causes the oxidizer to not go into the thruster the way it needs to. That’s what caused the degradation of thrust. When we saw that, I think that’s when things changed a bit for us.”

When NASA took this finding to the thruster’s manufacturer, Aerojet Rocketdyne, the propulsion company said it had never seen this phenomenon before. It was at this point that agency engineers started to believe that it might not be possible to identify the root cause of the problem in a timely manner and become comfortable enough with the physics to be sure that the thruster problem would not occur during Starliner’s return to Earth.

Thank you for flying SpaceX

The result of this uncertainty is that NASA will now turn to the other commercial crew provider, SpaceX. This is not a pleasant outcome for Boeing which, a decade ago, looked askance at SpaceX as something akin to space cowboys. I have covered the space industry closely during the last 15 years, and during most of that time Boeing was perceived by much of the industry as the blueblood of spaceflight while SpaceX was the company that was going to kill astronauts due to its supposed recklessness.

Now the space agency is asking SpaceX to, in effect, rescue the Boeing astronauts currently on the International Space Station.

It won’t be the first time that SpaceX has helped a competitor recently. In the last two years SpaceX has launched satellites for a low-Earth orbit Internet competitor, OneWeb, after Russia’s space program squeezed the company; it has launched Europe’s sovereign Galileo satellites after delays to the Ariane 6 rocket; and it has launched the Cygnus spacecraft built by NASA’s other space station cargo services provider, Northrop Grumman, multiple times. Now SpaceX will help out Boeing, a crew competitor.

After Saturday’s news conference, I asked Jim Free, NASA’s highest-ranking civil servant, what he made of the once-upstart SpaceX now helping to backstop the rest of the Western spaceflight community. Without SpaceX, after all, NASA would not have a way to get crew or cargo to the International Space Station.

“They’re flying a lot, and they’re having success,” Free said. “And you know, when they have an issue, they find a way to recover like with the second-stage issue, We set out to have two providers to take crew to station to have options, and they’ve given us the option. In the reverse, Boeing could have been out there, and we still would face the same thing if they had a systemic Dragon problem, Boeing would have to bring us back. But I can’t argue with how much they’ve flown, that’s for sure, and what they’ve flown.”

NASA not comfortable with Starliner thrusters, so crew will fly home on Dragon Read More »