AMD

for-the-second-time-in-two-years,-amd-blows-up-its-laptop-cpu-numbering-system

For the second time in two years, AMD blows up its laptop CPU numbering system

this again —

AMD reverses course on “decoder ring” numbering system for laptop CPUs.

AMD's Ryzen 9 AI 300 series is a new chip and a new naming scheme.

Enlarge / AMD’s Ryzen 9 AI 300 series is a new chip and a new naming scheme.

AMD

Less than two years ago, AMD announced that it was overhauling its numbering scheme for laptop processors. Each digit in its four-digit CPU model numbers picked up a new meaning, which, with the help of a detailed reference sheet, promised to inform buyers of exactly what it was they were buying.

One potential issue with this, as we pointed out at the time, was that this allowed AMD to change over the first and most important of those four digits every single year that it decided to re-release a processor, regardless of whether that chip actually included substantive improvements or not. Thus a “Ryzen 7730U” from 2023 would look two generations newer than a Ryzen 5800U from 2021, despite being essentially identical.

AMD is partially correcting this today by abandoning the self-described “decoder ring” naming system and resetting it to something more conventional.

For its new Ryzen AI laptop processors, codenamed “Strix Point,” AMD is still using the same broad Ryzen 3/5/7/9 number to communicate general performance level plus a one- or two-letter suffix to denote general performance and power level (U for ultraportables, HX for higher-performance chips, and so on). A new three-digit processor number will inform buyers of the chip’s generation in the first digit and denote the specific SKU using the last two digits.

AMD is changing how it numbers its laptop CPUs again.

Enlarge / AMD is changing how it numbers its laptop CPUs again.

AMD

In other words, the company is essentially hitting the undo button.

Like Intel, AMD is shifting from four-digit numbers to three digits. The Strix Point processor numbers will start with the 300 series, which AMD says is because this is the third generation of Ryzen laptop processors with a neural processing unit (NPU) included. Current 7040-series and 8040-series processors with NPUs are not being renamed retroactively, and AMD plans to stop using the 7000- and 8000-series numbering for processor introductions going forward.

AMD wouldn’t describe exactly how it would approach CPU model numbers for new products that used older architectures but did say that new processors that didn’t meet the 40+ TOPS requirement for Microsoft’s Copilot+ program would simply use the “Ryzen” name instead of the new “Ryzen AI” branding. That would include older architectures with slower NPUs, like the current 7040 and 8040-series chips.

Desktop CPUs are, once again, totally unaffected by this change. Desktop processors’ four-digit model numbers and alphabetic suffixes generally tell you all you need to know about their underlying architecture; the new Ryzen 9000 desktop CPUs and the Zen 5 architecture were also announced today.

It seems like a lot of work to do to end up basically where we started, especially when the people at AMD who make and market the desktop chips have been getting by just fine with older model numbers for newly released products when appropriate. But to be fair to AMD, there just isn’t a great way to do processor model numbers in a simple and consistent way, at least not given current market realities:

  • PC OEMs that seem to demand or expect “new” product from chipmakers every year, even though chip companies tend to take somewhere between one and three years to release significantly updated designs.
  • The fact that casual and low-end users don’t actually benefit a ton from performance enhancements, keeping older chips viable for longer.
  • Different subsections of the market that must be filled with slightly different chips (consider chips with vPro versus similar chips without it).
  • The need to “bin” chips—that is, disable small parts of a given silicon CPU or GPU die and then sell the results as a lower-end product—to recoup manufacturing costs and minimize waste.

Apple may come the closest to what the “ideal” would probably be—one number for the overarching chip generation (M1, M3, etc.), one word like “Pro” or “Max” to communicate the general performance level, and a straightforward description of the number of CPU and GPU cores included, to leave flexibility for binning chips. But as usual, Apple occupies a unique position: it’s the only company putting its own processors into its own systems, and the company usually only updates a product when there’s something new to put in it, rather than reflexively announcing new models every time another CES or back-to-school season or Windows version rolls around.

In reverting to more traditional model numbers, AMD has at least returned to a system that people who follow CPUs will be broadly familiar with. It’s not perfect, and it leaves plenty of room for ambiguity as the product lineup gets more complicated. But it’s in the same vein as Intel’s rebranding of 13th-gen Core chips, the whole “Intel Processor” thing, or Qualcomm’s unfriendly eight-digit model numbers for its Snapdragon X Plus and Elite chips. AMD’s new nomenclature is a devil, but at least it’s one we know.

For the second time in two years, AMD blows up its laptop CPU numbering system Read More »

amd’s-next-gen-ryzen-9000-desktop-chips-and-the-zen-5-architecture-arrive-in-july

AMD’s next-gen Ryzen 9000 desktop chips and the Zen 5 architecture arrive in July

ryzen again —

But AMD says AM4 will hang around for budget PCs well into 2025.

  • AMD is announcing Ryzen 9000 and Zen 5, the second CPU architecture for its AM5 platform.

    AMD

  • AMD’s Ryzen 9 9950X heads up the new Ryzen 9000 family.

    AMD

  • There are three other variants here, with 12, 8, and 6 Zen 5 CPU cores. The Ryzen 7000 series launched with chips at the same tiers.

    AMD

  • AMD is also announcing a pair of high-end chipsets, though they don’t offer much that’s new; 600-series boards should all support Ryzen 9000 after a BIOS update.

    AMD

  • The Zen 5 CPU architecture powers the Ryzen 9000 series.

    AMD

  • A handful of architectural highlights from Zen 5.

    AMD

  • The performance improvements with Zen 5 are occasionally quite impressive, but on average we’re looking at a 16 percent increase over Zen 4 at the same clock speeds. That’s decent, but not as good as the move from Zen 3 to Zen 4.

    AMD

It’s been almost two years since AMD introduced its Ryzen 7000 series desktop CPUs and the Zen 4 CPU architecture. Today, AMD is announcing the first concrete details about their successors. The Ryzen 9000 CPUs begin shipping in July.

At a high level, the Ryzen 9000 series and Zen 5 architecture offer mostly incremental improvements over Ryzen 7000 (Ryzen 8000 on the desktop is used exclusively for Zen 4-based G-series CPUs with more powerful integrated GPUs). AMD says that Zen 5 is roughly 16 percent faster than Zen 4 at the same clock speeds, depending on the workload—certainly not nothing, and there are some workloads that perform much better. But that number is far short of the 29 percent jump between Zen 3 and Zen 4.

AMD and Intel have both compensated for mild single-core performance improvements in the past by adding more cores, but Ryzen 9000 doesn’t do that. From the 9600X to the 9950X, the chips offer between 6 and 16 full-size Zen 5 cores, the same as every desktop lineup since Zen 2 and the Ryzen 3000 series. De-lidded shots of the processors indicate that they’re still using a total of two or three separate chiplets: one or two CPU chiplets with up to 8 cores each, and a separate I/O die to handle connectivity. The CPU chiplets are manufactured on a TSMC N4 process, an upgrade from the 5nm process used for Ryzen 7000, while the I/O die is still made with a 6nm TSMC process.

Ryzen 9000 has the same layout as the last few generations of Ryzen desktop CPU—two CPU chiplets with up to eight cores each, and an I/O die to handle connectivity.

Enlarge / Ryzen 9000 has the same layout as the last few generations of Ryzen desktop CPU—two CPU chiplets with up to eight cores each, and an I/O die to handle connectivity.

AMD

These chips include no Zen 5c E-cores, as older rumors suggested. Zen 5c is a version of Zen 5 that is optimized to take up less space in a silicon die, at the expense of higher clock speeds; Zen 5c cores are making their debut in the Ryzen AI 300-series laptop chips AMD also announced today. Boosting the number of E-cores has helped Intel match and surpass AMD’s multi-core performance, though Ryzen’s power consumption and efficiency have both outdone Intel’s throughout the 12th-, 13th-, and 14th-generation Core product cycles. Apple also uses a mix of P-cores and E-cores in its  high-end desktop CPU designs.

Ryzen 9000 doesn’t include any kind of neural processing unit (NPU), nor does AMD mention whether the Ryzen 7000’s RDNA 2-based integrated GPU has been upgraded or improved.

AMD is also announcing new X870 and X870E motherboard chipsets to accompany the new processors; as with the X670, the E-series chipset is actually a pair of chipsets on the same motherboard, boosting the number of available USB ports, M.2 slots, and PCIe slots.

The only real improvement here seems to be that all X870-series boards support USB4 and higher EXPO memory overclocking speeds by default. The chipsets also support PCIe 5.0 speeds for the main PCIe slot and M.2 slot, though the X670 chipsets already did this.

The processors’ power requirements aren’t changing, so users with 600-series motherboards ought to be able to use Ryzen 9000 CPUs with little to no performance penalty following a BIOS update.

  • AMD plans to keep the AM4 socket around as a budget platform until at least 2025, according to this slide.

    AMD

  • To that end, it’s announcing a couple more riffs on the old Zen 3-based Ryzen 5000 series, to entice budget builders and upgraders. Pricing hasn’t been announced.

    AMD

Ryzen 9000 doesn’t seem likely to resolve the biggest issues with the AM5 platform, namely the high costs relative to current-gen Intel systems, the high cost relative to AM4-based systems today, and even the high cost relative to AM4-based systems at the same point in the AM4 socket’s lifespan. Motherboards remain more expensive, DDR5 memory remains more expensive, and there are still no AM5 processors available for significantly less than $200.

According to AMD’s own timeline, it plans to keep the AM4 socket around until at least 2025. AM4 is still a surprisingly decent budget platform given that the socket was introduced eight years ago, and AMD does, in fact, continue to trickle out new Ryzen 5000-series CPUs to give buyers and upgrades more options. But it still means that system builders either need to choose between an expensive platform that has a future or a cheaper platform that’s more or less a dead end.

Listing image by AMD

AMD’s next-gen Ryzen 9000 desktop chips and the Zen 5 architecture arrive in July Read More »

amd-intros-ryzen-ai-300-chips-with-zen-5,-better-gpu,-and-hugely-improved-npu

AMD intros Ryzen AI 300 chips with Zen 5, better GPU, and hugely improved NPU

ai everywhere —

High-end Ryzen laptop chips combine big and little Zen cores for the first time.

  • AMD’s Ryzen AI 300 series is its next-gen laptop platform, and the first to support Copilot+ PC features.

    AMD

  • Ryzen AI 300 uses a new CPU architecture, a revamped NPU, and a tweaked GPU architecture that AMD hasn’t said much about.

    AMD

  • Only two high-end processors will be available by July, though others will surely follow.

    AMD

  • How AMD’s new laptop CPU naming scheme applies to Ryzen AI 300.

    AMD

AMD’s next-generation laptop processors are coming later this year, joining new Ryzen 9000 desktop processors and ushering in yet another revamp to the way AMD does laptop CPU model numbers.

But the big thing the company wants to push is the new chips’ performance in generative AI and machine-learning workloads—it’s putting “Ryzen AI” right in the name and emphasizing the presence of an improved neural processing unit (NPU) that meets and exceeds Microsoft’s performance requirements for Copilot+ PCs. The new Ryzen AI 300-series, codenamed Strix Point, succeeds the Ryzen 8040 chips from earlier this year, which were themselves a relatively mild refresh for the Ryzen 7040 processors less than a year before.

AMD promises performance of up to 50 trillion operations per second (TOPS) with its new third-generation NPU, a significant boost from the 10 to 16 TOPS offered by Ryzen 7000 and 8000 processors with NPUs. This would make it faster than the 45 TOPS offered by the Qualcomm Snapdragon X Elite and X Plus in the first wave of Copilot+ compatible PCs, and also Intel’s projected performance for its next-generation Core Ultra chips, codenamed Lunar Lake. All exceed Microsoft’s Copilot+ requirement of 40 TOPS, which enables some Windows 11 features that aren’t normally available on typical PCs. Copilot+ PCs can do more AI processing locally on device rather than relying on the cloud, potentially improving performance and giving users more privacy.

If you don’t particularly care about generative AI, locally executed or otherwise, the Ryzen AI 300 processors also come with an updated CPU based on the same Zen 5 architecture as the desktop chips, plus an “RDNA 3.5” integrated GPU to boost gaming performance for thin-and-light systems that can’t fit a dedicated graphics processor. The chips are being manufactured on a TSMC N4 process.

  • AMD is mostly talking about the performance of the new NPU, which at least according to AMD should slightly outperform offerings from Qualcomm and Intel.

    AMD

  • The new integrated GPUs stack up well against Intel’s current Arc GPUs, though how they perform against next-gen Lunar Lake-based chips is anyone’s guess.

    AMD

AMD is announcing two chips today, both in the high-end Ryzen 9 series. The Ryzen AI 9 HX 370 includes 12 CPU cores and 16 GPU cores, up from a maximum of eight CPU cores and 12 GPU cores for the Ryzen 8040 series. The Ryzen AI 9 365 steps down to 10 CPU cores and 12 GPU cores. Both have the same NPU onboard.

Though an increase in CPU core count suggests big improvements in multi-threaded performance, note that in both chips a majority of the CPU cores (8 in the 370, 6 in the 365) actually use the “Zen 5c” architecture, a variant of Zen 5 that supports the exact same instructions and features but is optimized for small size rather than high clock speeds. The result is essentially AMD’s version of one of Intel’s E-cores, though without the truly heterogeneous CPU architecture that has caused incompatibility problems with some apps and games.

This isn’t the first time we’ve seen a mix of big and small CPU cores from AMD, but it is the first time we’ve seen it at the high-end. Zen 4c cores only really showed up in lower-end, lower-power CPU designs in the Ryzen 3 and 5 and Ryzen Z1 families.

Perhaps tellingly, AMD offered no direct comparisons between the CPU performance of the Ryzen AI 300 chips and the Ryzen 8040 series, opting instead to compare to offerings from Intel, Qualcomm, and Apple. This certainly doesn’t mean performance has regressed generation over generation, but it is usually code for “this isn’t the kind of improvement we want to draw attention to.”

AMD also didn’t offer performance comparisons between the new Radeon 890M and 880M and the old Radeon 780M. The company said that the 890M was an average of 36 percent faster in a small selection of games compared to the Intel Arc integrated GPU in the Meteor Lake Core Ultra chips and 60 percent faster than the Snapdragon X Elite in the 3DMark Night Raid benchmark (this was part of a slide that was specifically highlighting the performance impact of translating x86 code on Arm chips, though for the time being it’s true that the vast majority of games running on Snapdragon PCs will have to deal with the overhead of code translation).

AMD says that the Ryzen AI chips are slated to appear in “100+ platforms from OEMs” starting in July 2024, a month or so after Microsoft and Qualcomm’s first wave of Snapdragon X-equipped Copilot+ PCs. Ryzen AI will also compete with Intel’s next-gen Lunar Lake chips, also due out sometime later this year.

Listing image by AMD

AMD intros Ryzen AI 300 chips with Zen 5, better GPU, and hugely improved NPU Read More »

framework’s-software-and-firmware-have-been-a-mess,-but-it’s-working-on-them

Framework’s software and firmware have been a mess, but it’s working on them

The Framework Laptop 13.

Enlarge / The Framework Laptop 13.

Andrew Cunningham

Since Framework showed off its first prototypes in February 2021, we’ve generally been fans of the company’s modular, repairable, upgradeable laptops.

Not that the company’s hardware releases to date have been perfect—each Framework Laptop 13 model has had quirks and flaws that range from minor to quite significant, and the Laptop 16’s upsides struggle to balance its downsides. But the hardware mostly does a good job of functioning as a regular laptop while being much more tinkerer-friendly than your typical MacBook, XPS, or ThinkPad.

But even as it builds new upgrades for its systems, expands sales of refurbished and B-stock hardware as budget options, and promotes the re-use of its products via external enclosures, Framework has struggled with the other side of computing longevity and sustainability: providing up-to-date software.

Driver bundles remain un-updated for years after their initial release. BIOS updates go through long and confusing beta processes, keeping users from getting feature improvements, bug fixes, and security updates. In its community support forums, Framework employees, including founder and CEO Nirav Patel, have acknowledged these issues and promised fixes but have remained inconsistent and vague about actual timelines.

But according to Patel, the company is working on fixing these issues, and it has taken some steps to address them. We spoke to him about the causes of and the solutions to these issues, and the company’s approach to the software side of its efforts to promote repairability and upgradeability.

Promises made

Here’s a case in point: the 12th-generation Intel version of the Framework Laptop 13, which prompted me to start monitoring Framework’s software and firmware updates in the first place.

In November 2022, Patel announced that this model, then the latest version, was getting a nice, free-of-charge spec bump. All four of the laptop’s recessed USB-C ports would now become full-speed Thunderbolt ports. This wasn’t a dramatic functional change, especially for people who were mostly using those ports for basic Framework expansion modules like USB-A or HDMI, but the upgrade opened the door to high-speed external accessories, and all it would need was a BIOS update.

The recessed USB-C ports in the 12th-gen Intel version of the Framework Laptop 13 can be upgraded to fully certified Thunderbolt ports, but only if you're willing to install one in a long series of still-in-testing beta BIOSes.

Enlarge / The recessed USB-C ports in the 12th-gen Intel version of the Framework Laptop 13 can be upgraded to fully certified Thunderbolt ports, but only if you’re willing to install one in a long series of still-in-testing beta BIOSes.

Andrew Cunningham

A final version of this BIOS update finally showed up this week, nearly a year and a half later. Up until last week, Framework’s support page for that 12th-gen Intel laptop still said that there was “no new BIOS available” for a laptop that began shipping in the summer of 2022. This factory-installed BIOS, version 3.04, also didn’t include fixes for the LogoFAIL UEFI security vulnerability or any other firmware-based security patches that have cropped up in the last year and a half.

And it’s not just that the updates don’t come out in a timely way; the company has been bad about estimating when they might come out. That old12th-gen Framework BIOS also didn’t support the 61 WHr battery that the company released in early 2023 alongside the 13th-gen Intel refresh. Framework originally told me that BIOS update would be out in May of 2023. A battery-supporting update for the 11th-gen Intel version was also promised in May 2023; it came out this past January.

Framework has been trying, but it keeps running into issues. A beta 3.06 BIOS update with the promised improvements for the 12th-gen Intel Framework Laptop was posted back in December of 2022, but a final version was never released. The newer 3.08 BIOS beta entered testing in January 2024 but still gave users some problems. Users would go for weeks or months without any communication from anyone at Framework.

The result is multiple long forum threads of frustrated users asking for updates, interspersed with not-untrue but unsatisfying responses from Framework employees (some version of “we’re a small company” is one of the most common).

Framework’s software and firmware have been a mess, but it’s working on them Read More »

amd-promises-big-upscaling-improvements-and-a-future-proof-api-in-fsr-3.1

AMD promises big upscaling improvements and a future-proof API in FSR 3.1

upscale upscaling —

API should help more games get future FSR improvements without a game update.

AMD promises big upscaling improvements and a future-proof API in FSR 3.1

AMD

Last summer, AMD debuted the latest version of its FidelityFX Super Resolution (FSR) upscaling technology. While version 2.x focused mostly on making lower-resolution images look better at higher resolutions, version 3.0 focused on AMD’s “Fluid Motion Frames,” which attempt to boost FPS by generating interpolated frames to insert between the ones that your GPU is actually rendering.

Today, the company is announcing FSR 3.1, which among other improvements decouples the upscaling improvements in FSR 3.x from the Fluid Motion Frames feature. FSR 3.1 will be available “later this year” in games whose developers choose to implement it.

Fluid Motion Frames and Nvidia’s equivalent DLSS Frame Generation usually work best when a game is already running at a high frame rate, and even then can be more prone to mistakes and odd visual artifacts than regular FSR or DLSS upscaling. FSR 3.0 was an all-or-nothing proposition, but version 3.1 should let you pick and choose what features you want to enable.

It also means you can use FSR 3.0 frame generation with other upscalers like DLSS, especially useful for 20- and 30-series Nvidia GeForce GPUs that support DLSS upscaling but not DLSS Frame Generation.

“When using FSR 3 Frame Generation with any upscaling quality mode OR with the new ‘Native AA’ mode, it is highly recommended to be always running at a minimum of ~60 FPS before Frame Generation is applied for an optimal high-quality gaming experience and to mitigate any latency introduced by the technology,” wrote AMD’s Alexander Blake-Davies in the post announcing FSR 3.1.

Generally, FSR’s upscaling image quality falls a little short of Nvidia’s DLSS, but FSR 2 closed that gap a bit, and FSR 3.1 goes further. AMD highlights two specific improvements: one for “temporal stability,” which will help reduce the flickering and shimmering effect that FSR sometimes introduces, and one for ghosting reduction, which will reduce unintentional blurring effects for fast-moving objects.

The biggest issue with these new FSR improvements is that they need to be implemented on a game-to-game basis. FSR 3.0 was announced in August 2023, and AMD now trumpets that there are 40 “available and upcoming” games that support the technology, of which just 19 are currently available. There are a lot of big-name AAA titles in the list, but that’s still not many compared to the sum total of all PC games or even the 183 titles that currently support FSR 2.x.

AMD wants to help solve this problem in FSR 3.1 by introducing a stable FSR API for developers, which AMD says “makes it easier for developers to debug and allows forward compatibility with updated versions of FSR.” This may eventually lead to more games getting future FSR improvements for “free,” without the developer’s effort.

AMD didn’t mention any hardware requirements for FSR 3.1, though presumably, the company will still support a reasonably wide range of recent GPUs from AMD, Nvidia, and Intel. FSR 3.0 is formally supported on Radeon RX 5000, 6000, and 7000 cards, Nvidia’s RTX 20-series and newer, and Intel Arc GPUs. It will also bring FSR 3.x features to games that use the Vulkan API, not just DirectX 12, and the Xbox Game Development Kit (GDK) so it can be used in console titles as well as PC games.

AMD promises big upscaling improvements and a future-proof API in FSR 3.1 Read More »

amd-stops-certifying-monitors,-tvs-under-144-hz-for-freesync

AMD stops certifying monitors, TVs under 144 Hz for FreeSync

60 Hz is so 2015 —

120 Hz is good enough for consoles, but not for FreeSync.

AMD's depiction of a game playing without FreeSync (left) and with FreeSync (right).

Enlarge / AMD’s depiction of a game playing without FreeSync (left) and with FreeSync (right).

AMD announced this week that it has ceased FreeSync certification for monitors or TVs whose maximum refresh rates are under 144 Hz. Previously, FreeSync monitors and TVs could have refresh rates as low as 60 Hz, allowing for screens with lower price tags and ones not targeted at serious gaming to carry the variable refresh-rate technology.

AMD also boosted the refresh-rate requirements for its higher AdaptiveSync tiers, FreeSync Premium and FreeSync Premium Pro, from 120 Hz to 200 Hz.

Here are the new minimum refresh-rate requirements for FreeSync, which haven’t changed for laptops.

Laptops Monitors and TVs
FreeSync Max refresh rate: 40-60 Hz < 3440 Horizontal resolution:

Max refresh rate: ≥ 144 Hz
FreeSync Premium Max refresh rate: ≥ 120 Hz < 3440 Horizontal resolution:

Max refresh rate: ≥ 200 Hz≥ 3440 Horizontal resolution:

Max refresh rate: ≥ 120 Hz
FreeSync Premium Pro FreeSync Premium requirements, plus FreeSync support with HDR FreeSync Premium requirements, plus FreeSync support with HDR

AMD will continue supporting already-certified FreeSync displays even if they don’t meet the above requirements.

Interestingly, AMD’s minimum refresh-rate requirements for TVs go beyond 120 Hz, which many premium TVs currently max out at, due to the current-generation Xbox and PlayStation supporting max refresh rates of 120 frames per second (FPS).

Announcing the changes this week in a blog post, Oguzhan Andic, AMD FreeSync and Radeon product marketing manager, claimed that the changes were necessary, noting that 60 Hz is no longer “considered great for gaming.” Andic wrote that the majority of gaming monitors are 144 Hz or higher, compared to in 2015, when FreeSync debuted, and even 120 Hz was “a rarity.”

Since 2015, refresh rates have climbed ever higher, with the latest sports targeting competitive players hitting 500 Hz, with display stakeholders showing no signs of ending the push for more speed. Meanwhile, FreeSync cemented itself as the more accessible flavor of Adaptive Sync than Nvidia’s G-Sync, which for a long time required specific hardware to run, elevating the costs of supporting products.

AMD’s announcement didn’t address requirements for refresh-rate ranges. Hopefully, OEMs will continue making FreeSync displays, especially monitors, that can still fight screen tears when framerates drop to the double digits.

The changes should also elevate the future price of entry for a monitor or TV with FreeSync TV. Sometimes the inclusion of FreeSync served as a differentiator for people seeking an affordable display and who occasionally do some light gaming or enjoy other media with fast-paced video playback. FreeSync committing itself to 144 Hz and faster screens could help the certification be aligned more with serious gaming.

Meanwhile, there is still hope for future, slower screens to get certification for variable refresh rates. In 2022, the Video Electronics Standards Association (VESA) released its MediaSync Display for video playback and AdaptiveSync for gaming, certifications that have minimum refresh-rate requirements of 60 Hz. VESA developed the lengthy detailed certifications with its dozens of members, including AMD (a display could be MediaSync/AdaptiveSync and/or FreeSync and/or G-Sync certified). In addition to trying to appeal to core gamers, it’s possible that AMD also sees the VESA certifications as more appropriate for slower displays.

AMD stops certifying monitors, TVs under 144 Hz for FreeSync Read More »

review:-amd-radeon-rx-7900-gre-gpu-doesn’t-quite-earn-its-“7900”-label

Review: AMD Radeon RX 7900 GRE GPU doesn’t quite earn its “7900” label

rabbit season —

New $549 graphics card is the more logical successor to the RX 6800 XT.

ASRock's take on AMD's Radeon RX 7900 GRE.

Enlarge / ASRock’s take on AMD’s Radeon RX 7900 GRE.

Andrew Cunningham

In July 2023, AMD released a new GPU called the “Radeon RX 7900 GRE” in China. GRE stands for “Golden Rabbit Edition,” a reference to the Chinese zodiac, and while the card was available outside of China in a handful of pre-built OEM systems, AMD didn’t make it widely available at retail.

That changes today—AMD is launching the RX 7900 GRE at US retail for a suggested starting price of $549. This throws it right into the middle of the busy upper-mid-range graphics card market, where it will compete with Nvidia’s $549 RTX 4070 and the $599 RTX 4070 Super, as well as AMD’s own $500 Radeon RX 7800 XT.

We’ve run our typical set of GPU tests on the 7900 GRE to see how it stacks up to the cards AMD and Nvidia are already offering. Is it worth buying a new card relatively late in this GPU generation, when rumors point to new next-gen GPUs from Nvidia, AMD, and Intel before the end of the year? Can the “Golden Rabbit Edition” still offer a good value, even though it’s currently the year of the dragon?

Meet the 7900 GRE

RX 7900 XT RX 7900 GRE RX 7800 XT RX 6800 XT RX 6800 RX 7700 XT RX 6700 XT RX 6750 XT
Compute units (Stream processors) 84 (5,376) 80 (5,120) 60 (3,840) 72 (4,608) 60 (3,840) 54 (3,456) 40 (2,560) 40 (2,560)
Boost Clock 2,400 MHz 2,245 MHz 2,430 MHz 2,250 MHz 2,105 MHz 2,544 MHz 2,581 MHz 2,600 MHz
Memory Bus Width 320-bit 256-bit 256-bit 256-bit 256-bit 192-bit 192-bit 192-bit
Memory Clock 2,500 MHz 2,250 MHz 2,438 MHz 2,000 MHz 2,000 MHz 2,250 MHz 2,000 MHz 2,250 MHz
Memory size 20GB GDDR6 16GB GDDR6 16GB GDDR6 16GB GDDR6 16GB GDDR6 12GB GDDR6 12GB GDDR6 12GB GDDR6
Total board power (TBP) 315 W 260 W 263 W 300 W 250 W 245 W 230 W 250 W

The 7900 GRE slots into AMD’s existing lineup above the RX 7800 XT (currently $500-ish) and below the RX 7900 (around $750). Technologically, we’re looking at the same Navi 31 GPU silicon as the 7900 XT and XTX, but with just 80 of the compute units enabled, down from 84 and 96, respectively. The normal benefits of the RDNA3 graphics architecture apply, including hardware-accelerated AV1 video encoding and DisplayPort 2.1 support.

The 7900 GRE also includes four active memory controller die (MCD) chiplets, giving it a narrower 256-bit memory bus and 16GB of memory instead of 20GB—still plenty for modern games, though possibly not quite as future-proof as the 7900 XT. The card uses significantly less power than the 7900 XT and about the same amount as the 7800 XT. That feels a bit weird, intuitively, since slower cards almost always consume less power than faster ones. But it does make some sense; pushing the 7800 XT’s smaller Navi 32 GPU to get higher clock speeds out of it is probably making it run a bit less efficiently than a larger Navi 31 GPU die that isn’t being pushed as hard.

  • Andrew Cunningham

  • Andrew Cunningham

  • Andrew Cunningham

When we reviewed the 7800 XT last year, we noted that its hardware configuration and performance made it seem more like a successor to the (non-XT) Radeon RX 6800, while it just barely managed to match or beat the 6800 XT in our tests. Same deal with the 7900 GRE, which is a more logical successor to the 6800 XT. Bear that in mind when doing generation-over-generation comparisons.

Review: AMD Radeon RX 7900 GRE GPU doesn’t quite earn its “7900” label Read More »

your-current-pc-probably-doesn’t-have-an-ai-processor,-but-your-next-one-might

Your current PC probably doesn’t have an AI processor, but your next one might

Intel's Core Ultra chips are some of the first x86 PC processors to include built-in NPUs. Software support will slowly follow.

Enlarge / Intel’s Core Ultra chips are some of the first x86 PC processors to include built-in NPUs. Software support will slowly follow.

Intel

When it announced the new Copilot key for PC keyboards last month, Microsoft declared 2024 “the year of the AI PC.” On one level, this is just an aspirational PR-friendly proclamation, meant to show investors that Microsoft intends to keep pushing the AI hype cycle that has put it in competition with Apple for the title of most valuable publicly traded company.

But on a technical level, it is true that PCs made and sold in 2024 and beyond will generally include AI and machine-learning processing capabilities that older PCs don’t. The main thing is the neural processing unit (NPU), a specialized block on recent high-end Intel and AMD CPUs that can accelerate some kinds of generative AI and machine-learning workloads more quickly (or while using less power) than the CPU or GPU could.

Qualcomm’s Windows PCs were some of the first to include an NPU, since the Arm processors used in most smartphones have included some kind of machine-learning acceleration for a few years now (Apple’s M-series chips for Macs all have them, too, going all the way back to 2020’s M1). But the Arm version of Windows is a insignificantly tiny sliver of the entire PC market; x86 PCs with Intel’s Core Ultra chips, AMD’s Ryzen 7040/8040-series laptop CPUs, or the Ryzen 8000G desktop CPUs will be many mainstream PC users’ first exposure to this kind of hardware.

Right now, even if your PC has an NPU in it, Windows can’t use it for much, aside from webcam background blurring and a handful of other video effects. But that’s slowly going to change, and part of that will be making it relatively easy for developers to create NPU-agnostic apps in the same way that PC game developers currently make GPU-agnostic games.

The gaming example is instructive, because that’s basically how Microsoft is approaching DirectML, its API for machine-learning operations. Though up until now it has mostly been used to run these AI workloads on GPUs, Microsoft announced last week that it was adding DirectML support for Intel’s Meteor Lake NPUs in a developer preview, starting in DirectML 1.13.1 and ONNX Runtime 1.17.

Though it will only run an unspecified “subset of machine learning models that have been targeted for support” and that some “may not run at all or may have high latency or low accuracy,” it opens the door to more third-party apps to start taking advantage of built-in NPUs. Intel says that Samsung is using Intel’s NPU and DirectML for facial recognition features in its photo gallery app, something that Apple also uses its Neural Engine for in macOS and iOS.

The benefits can be substantial, compared to running those workloads on a GPU or CPU.

“The NPU, at least in Intel land, will largely be used for power efficiency reasons,” Intel Senior Director of Technical Marketing Robert Hallock told Ars in an interview about Meteor Lake’s capabilities. “Camera segmentation, this whole background blurring thing… moving that to the NPU saves about 30 to 50 percent power versus running it elsewhere.”

Intel and Microsoft are both working toward a model where NPUs are treated pretty much like GPUs are today: developers generally target DirectX rather than a specific graphics card manufacturer or GPU architecture, and new features, one-off bug fixes, and performance improvements can all be addressed via GPU driver updates. Some GPUs run specific games better than others, and developers can choose to spend more time optimizing for Nvidia cards or AMD cards, but generally the model is hardware agnostic.

Similarly, Intel is already offering GPU-style driver updates for its NPUs. And Hallock says that Windows already essentially recognizes the NPU as “a graphics card with no rendering capability.”

Your current PC probably doesn’t have an AI processor, but your next one might Read More »

ryzen-8000g-review:-an-integrated-gpu-that-can-beat-a-graphics-card,-for-a-price

Ryzen 8000G review: An integrated GPU that can beat a graphics card, for a price

The most interesting thing about AMD's Ryzen 7 8700G CPU is the Radeon 780M GPU that's attached to it.

Enlarge / The most interesting thing about AMD’s Ryzen 7 8700G CPU is the Radeon 780M GPU that’s attached to it.

Andrew Cunningham

Put me on the short list of people who can get excited about the humble, much-derided integrated GPU.

Yes, most of them are afterthoughts, designed for office desktops and laptops that will spend most of their lives rendering 2D images to a single monitor. But when integrated graphics push forward, it can open up possibilities for people who want to play games but can only afford a cheap desktop (or who have to make do with whatever their parents will pay for, which was the big limiter on my PC gaming experience as a kid).

That, plus an unrelated but accordant interest in building small mini-ITX-based desktops, has kept me interested in AMD’s G-series Ryzen desktop chips (which it sometimes calls “APUs,” to distinguish them from the Ryzen CPUs). And the Ryzen 8000G chips are a big upgrade from the 5000G series that immediately preceded them (this makes sense, because as we all know the number 8 immediately follows the number 5).

We’re jumping up an entire processor socket, one CPU architecture, three GPU architectures, and up to a new generation of much faster memory; especially for graphics, it’s a pretty dramatic leap. It’s an integrated GPU that can credibly beat the lowest tier of currently available graphics cards, replacing a $100–$200 part with something a lot more energy-efficient.

As with so many current-gen Ryzen chips, still-elevated pricing for the socket AM5 platform and the DDR5 memory it requires limit the 8000G series’ appeal, at least for now.

From laptop to desktop

AMD's first Ryzen 8000 desktop processors are what the company used to call

Enlarge / AMD’s first Ryzen 8000 desktop processors are what the company used to call “APUs,” a combination of a fast integrated GPU and a reasonably capable CPU.

AMD

The 8000G chips use the same Zen 4 CPU architecture as the Ryzen 7000 desktop chips, but the way the rest of the chip is put together is pretty different. Like past APUs, these are actually laptop silicon (in this case, the Ryzen 7040/8040 series, codenamed Phoenix and Phoenix 2) repackaged for a desktop processor socket.

Generally, the real-world impact of this is pretty mild; in most ways, the 8700G and 8600G will perform a lot like any other Zen 4 CPU with the same number of cores (our benchmarks mostly bear this out). But to the extent that there is a difference, the Phoenix silicon will consistently perform just a little worse, because it has half as much L3 cache. AMD’s Ryzen X3D chips revolve around the performance benefits of tons of cache, so you can see why having less would be detrimental.

The other missing feature from the Ryzen 7000 desktop chips is PCI Express 5.0 support—Ryzen 8000G tops out at PCIe 4.0. This might, maybe, one day in the distant future, eventually lead to some kind of user-observable performance difference. Some recent GPUs use an 8-lane PCIe 4.0 interface instead of the typical 16 lanes, which limits performance slightly. But PCIe 5.0 SSDs remain rare (and PCIe 4.0 peripherals remain extremely fast), so it probably shouldn’t top your list of concerns.

The Ryzen 5 8500G is a lot different from the 8700G and 8600G, since some of the CPU cores in the Phoenix 2 chips are based on Zen 4c rather than Zen 4. These cores have all the same capabilities as regular Zen 4 ones—unlike Intel’s E-cores—but they’re optimized to take up less space rather than hit high clock speeds. They were initially made for servers, where cramming lots of cores into a small amount of space is more important than having a smaller number of faster cores, but AMD is also using them to make some of its low-end consumer chips physically smaller and presumably cheaper to produce. AMD didn’t send us a Ryzen 8500G for review, so we can’t see exactly how Phoenix 2 stacks up in a desktop.

The 8700G and 8600G chips are also the only ones that come with AMD’s “Ryzen AI” feature, the brand AMD is using to refer to processors with a neural processing unit (NPU) included. Sort of like GPUs or video encoding/decoding blocks, these are additional bits built into the chip that handle things that CPUs can’t do very efficiently—in this case, machine learning and AI workloads.

Most PCs still don’t have NPUs, and as such they are only barely used in current versions of Windows (Windows 11 offers some webcam effects that will take advantage of NPU acceleration, but for now that’s mostly it). But expect this to change as they become more common and as more AI-accelerated text, image, and video creating and editing capabilities are built into modern operating systems.

The last major difference is the GPU. Ryzen 7000 includes a pair of RDNA2 compute units that perform more or less like Intel’s desktop integrated graphics: good enough to render your desktop on a monitor or two, but not much else. The Ryzen 8000G chips include up to 12 RDNA3 CUs, which—as we’ve already seen in laptops and portable gaming systems like the Asus ROG Ally that use the same silicon—is enough to run most games, if just barely in some cases.

That gives AMD’s desktop APUs a unique niche. You can use them in cases where you can’t afford a dedicated GPU—for a time during the big graphics card shortage in 2020 and 2021, a Ryzen 5700G was actually one of the only ways to build a budget gaming PC. Or you can use them in cases where a dedicated GPU won’t fit, like super-small mini ITX-based desktops.

The main argument that AMD makes is the affordability one, comparing the price of a Ryzen 8700G to the price of an Intel Core i5-13400F and a GeForce GTX 1650 GPU (this card is nearly five years old, but it remains Nvidia’s newest and best GPU available for less than $200).

Let’s check on performance first, and then we’ll revisit pricing.

Ryzen 8000G review: An integrated GPU that can beat a graphics card, for a price Read More »

$329-radeon-7600-xt-brings-16gb-of-memory-to-amd’s-latest-midrange-gpu

$329 Radeon 7600 XT brings 16GB of memory to AMD’s latest midrange GPU

more rams —

Updated 7600 XT also bumps up clock speeds and power requirements.

The new Radeon RX 7600 XT mostly just adds extra memory, though clock speeds and power requirements have also increased somewhat.

Enlarge / The new Radeon RX 7600 XT mostly just adds extra memory, though clock speeds and power requirements have also increased somewhat.

AMD

Graphics card buyers seem anxious about buying a GPU with enough memory installed, even in midrange graphics cards that aren’t otherwise equipped to play games at super-high resolutions. And while this anxiety tends to be a bit overblown—lots of first- and third-party testing of cards like the GeForce 4060 Ti shows that just a handful of games benefit when all you do is boost GPU memory from 8GB to 16GB—there’s still a market for less-expensive GPUs with big pools of memory, whether you’re playing games that need it or running compute tasks that benefit from it.

That’s the apparent impetus behind AMD’s sole GPU announcement from its slate of CES news today: the $329 Radeon RX 7600 XT, a version of last year’s $269 RX 7600 with twice as much memory, slightly higher clock speeds, and higher power use to go with it.

RX 7700 XT RX 7600 RX 7600 XT RX 6600 RX 6600 XT RX 6650 XT RX 6750 XT
Compute units (Stream processors) 54 (3,456) 32 (2,048) 32 (2,048) 28 (1,792) 32 (2,048) 32 (2,048) 40 (2,560)
Boost Clock 2,544 MHz 2,600 MHz 2,760 MHz 2,490 MHz 2,589 MHz 2,635 MHz 2,600 MHz
Memory Bus Width 192-bit 128-bit 128-bit 128-bit 128-bit 128-bit 192-bit
Memory Clock 2,250 MHz 2,250 MHz 2,250 MHz 1,750 MHz 2,000 MHz 2,190 MHz 2,250 MHz
Memory size 12GB GDDR6 8GB GDDR6 16GB GDDR6 8GB GDDR6 8GB GDDR6 8GB GDDR6 12GB GDDR6
Total board power (TBP) 245 W 165 W 190 W 132 W 160 W 180 W 250 W

The core specifications of the 7600 XT remain the same as the regular 7600: 32 of AMD’s compute units (CUs) based on the RDNA3 GPU architecture and the same memory clock speed attached to the same 128-bit memory bus. But RAM has been boosted from 8GB to 16GB, and the GPU’s clock speeds have been boosted a little, ensuring that the card runs games a little faster than the regular 7600, even in games that don’t care about the extra memory.

Images of AMD’s reference design show a slightly larger card than the regular 7600, with a second 8-pin power connector to provide the extra power (total board power increases from 165 W to 190 W). The only other difference between the cards is DisplayPort 2.1 support—it was optional in the regular RX 7600, but all 7600 XTs will have it. That brings it in line with all the other RX 7000-series GPUs.

  • AMD’s hand-picked benchmarks generally show a mild performance improvement over the RX 7600, though Forza is an outlier.

    AMD

  • The 7600 XT’s performance relative to Nvidia’s RTX 4060 is also a little better than the RX 7600’s, thanks to added RAM and higher clocks. But Nvidia should continue to benefit from superior ray-tracing performance in a lot of games.

    AMD

  • Testing against the 4060 at 1440p. Note that the longest bars are coming from games with FSR 3 frame-generation enabled and that Nvidia’s cards also support DLSS 3.

    AMD

  • The complete RX 7000-series lineup.

    AMD

AMD’s provided performance figures show the 7600 XT outrunning the regular 7600 by between 5 and 10 percent in most titles, with one—Forza Horizon 5 with ray-tracing turned all the way up—showing a more significant jump of around 40 percent at 1080p and 1440p. Whether that kind of performance jump is worth the extra $60 depends on the games you play and how worried you are about the system requirements in future games.

AMD says the RX 7600 XT will be available starting on January 24. Pricing and availability for other RX 7000-series GPUs, including the regular RX 7600, aren’t changing.

$329 Radeon 7600 XT brings 16GB of memory to AMD’s latest midrange GPU Read More »

amd-releases-even-more-ryzen-5000-cpus,-keeps-its-last-gen-am4-platform-alive

AMD releases even more Ryzen 5000 CPUs, keeps its last-gen AM4 platform alive

the long goodbye —

New-old chips stick with the aging Zen 3, but could be good CPU upgrade options.

Four new Ryzen 5000 CPUs, all riffs on existing Ryzen 5000 CPUs.

Enlarge / Four new Ryzen 5000 CPUs, all riffs on existing Ryzen 5000 CPUs.

AMD

AMD announced the first Ryzen 8000 desktop processors today: a new lineup of socket AM5 CPUs that bring RDNA 3 integrated GPUs and an AI-accelerating NPU to its desktop platform for the first time. But the company also spent some time on new budget chips for its last-generation AM4 platform. The four new Ryzen 5000 processors cover everything from budget office desktops with integrated GPUs to cost-conscious gaming systems.

At the top of the range is the Ryzen 7 5700X3D, an 8-core CPU with an extra 64MB slab of L3 cache stacked on top of the main CPU die. At $249, it will be a little over $100 cheaper than the 5800X3D, but with the same core count, cache size, and a slightly lower maximum clock speed (4.1 GHz, down from 4.5 GHz). AMD compared it favorably to the Core i5-13600K in gaming workloads, a chip that currently retails for a bit over $280.

The Ryzen 7 5700 is a $175 8-core processor without 3D V-Cache that should still perform reasonably well in most workloads, though AMD’s spec sheet says that it has less cache than the 5700X and only supports PCI Express 3.0 instead of PCIe 4.0. This indicates that the 5700 is actually a 5700G with the integrated graphics disabled; it will be a bit slower than the Ryzen 5700X, despite their similar names, core counts, and clock speeds. The Ryzen 5 5600GT and 5500GT are 6- and 4-core chips with Vega-based integrated graphics, both intended for lower-end systems. At $140 and $125, they essentially amount to minor clock speed bumps for the existing Ryzen 5 5600G and Ryzen 3 5300G.

The new chips are the latest in a surprisingly long line of last hurrahs. Early 2022 brought us some new budget processors and the Ryzen 5800X3D, just a few months before the AM5 platform launched. And in mid-2023, AMD released a limited-edition Ryzen 5600X3D for people who could get to a local Micro Center store and buy one (as of this writing, a quick spot-check of several east coast Micro Centers showed that 5600X3D chips were still broadly available at that price).

It’s hard to recommend that anyone building a new PC go with the socket AM4 platform at this point—even these “new” chips are still using the old Zen 3 architecture and are broadly similar to older products that have been available since late 2020. But they’re still decent cost-efficient upgrade options for people who already have an AM4 motherboard that they use with a Ryzen 1000, 2000, or 3000 processor; if you upgrade from a Ryzen 1000-series chip, it will also help your PC meet Windows 11’s official system requirements, if that’s something you care about.

“AM4 continues to be a key part of our product portfolio,” AMD PR Manager Matthew Hurwitz told Ars when asked why AMD was still releasing new Ryzen 5000 CPUs. “New SKUs give users more options to fit their budget or use case.”

The complete, small-print list of all the AM4 and AM5 processors AMD will offer as of late January.

Enlarge / The complete, small-print list of all the AM4 and AM5 processors AMD will offer as of late January.

AMD

Hurwitz also told us that, unlike the 5600X3D, there would be no availability limitations for any of these new Ryzen 5000 chips. The company also doesn’t immediately plan to discontinue any other Ryzen 5000 CPUs that are still being sold, though “there is always a natural shift from older to newer SKUs as time passes.”

These new-old chips will all be available to purchase starting on January 31. We can at least be thankful that, unlike AMD’s laptop CPUs, the model numbers of these processors aren’t changing just because of the year they were released.

Listing image by AMD

AMD releases even more Ryzen 5000 CPUs, keeps its last-gen AM4 platform alive Read More »

2023-was-the-year-that-gpus-stood-still

2023 was the year that GPUs stood still

2023 was the year that GPUs stood still

Andrew Cunningham

In many ways, 2023 was a long-awaited return to normalcy for people who build their own gaming and/or workstation PCs. For the entire year, most mainstream components have been available at or a little under their official retail prices, making it possible to build all kinds of PCs at relatively reasonable prices without worrying about restocks or waiting for discounts. It was a welcome continuation of some GPU trends that started in 2022. Nvidia, AMD, and Intel could release a new GPU, and you could consistently buy that GPU for roughly what it was supposed to cost.

That’s where we get into how frustrating 2023 was for GPU buyers, though. Cards like the GeForce RTX 4090 and Radeon RX 7900 series launched in late 2022 and boosted performance beyond what any last-generation cards could achieve. But 2023’s midrange GPU launches were less ambitious. Not only did they offer the performance of a last-generation GPU, but most of them did it for around the same price as the last-gen GPUs whose performance they matched.

The midrange runs in place

Not every midrange GPU launch will get us a GTX 1060—a card roughly 50 percent faster than its immediate predecessor and beat the previous-generation GTX 980 despite costing just a bit over half as much money. But even if your expectations were low, this year’s midrange GPU launches have been underwhelming.

The worst was probably the GeForce RTX 4060 Ti, which sometimes struggled to beat the card it replaced at around the same price. The 16GB version of the card was particularly maligned since it was $100 more expensive but was only faster than the 8GB version in a handful of games.

The regular RTX 4060 was slightly better news, thanks partly to a $30 price drop from where the RTX 3060 started. The performance gains were small, and a drop from 12GB to 8GB of RAM isn’t the direction we prefer to see things move, but it was still a slightly faster and more efficient card at around the same price. AMD’s Radeon RX 7600, RX 7700 XT, and RX 7800 XT all belong in this same broad category—some improvements, but generally similar performance to previous-generation parts at similar or slightly lower prices. Not an exciting leap for people with aging GPUs who waited out the GPU shortage to get an upgrade.

The best midrange card of the generation—and at $600, we’re definitely stretching the definition of “midrange”—might be the GeForce RTX 4070, which can generally match or slightly beat the RTX 3080 while using much less power and costing $100 less than the RTX 3080’s suggested retail price. That seems like a solid deal once you consider that the RTX 3080 was essentially unavailable at its suggested retail price for most of its life span. But $600 is still a $100 increase from the 2070 and a $220 increase from the 1070, making it tougher to swallow.

In all, 2023 wasn’t the worst time to buy a $300 GPU; that dubious honor belongs to the depths of 2021, when you’d be lucky to snag a GTX 1650 for that price. But “consistently available, basically competent GPUs” are harder to be thankful for the further we get from the GPU shortage.

Marketing gets more misleading

1.7 times faster than the last-gen GPU? Sure, under exactly the right conditions in specific games.

Enlarge / 1.7 times faster than the last-gen GPU? Sure, under exactly the right conditions in specific games.

Nvidia

If you just looked at Nvidia’s early performance claims for each of these GPUs, you might think that the RTX 40-series was an exciting jump forward.

But these numbers were only possible in games that supported these GPUs’ newest software gimmick, DLSS Frame Generation (FG). The original DLSS and DLSS 2 improve performance by upsampling the images generated by your GPU, generating interpolated pixels that make lower-res image into higher-res ones without the blurriness and loss of image quality you’d get from simple upscaling. DLSS FG generates entire frames in between the ones being rendered by your GPU, theoretically providing big frame rate boosts without requiring a powerful GPU.

The technology is impressive when it works, and it’s been successful enough to spawn hardware-agnostic imitators like the AMD-backed FSR 3 and an alternate implementation from Intel that’s still in early stages. But it has notable limitations—mainly, it needs a reasonably high base frame rate to have enough data to generate convincing extra frames, something that these midrange cards may struggle to do. Even when performance is good, it can introduce weird visual artifacts or lose fine detail. The technology isn’t available in all games. And DLSS FG also adds a bit of latency, though this can be offset with latency-reducing technologies like Nvidia Reflex.

As another tool in the performance-enhancing toolbox, DLSS FG is nice to have. But to put it front-and-center in comparisons with previous-generation graphics cards is, at best, painting an overly rosy picture of what upgraders can actually expect.

2023 was the year that GPUs stood still Read More »