Ai video generator

twirling-body-horror-in-gymnastics-video-exposes-ai’s-flaws

Twirling body horror in gymnastics video exposes AI’s flaws


The slithy toves did gyre and gimble in the wabe

Nonsensical jabberwocky movements created by OpenAI’s Sora are typical for current AI-generated video, and here’s why.

A still image from an AI-generated video of an ever-morphing synthetic gymnast. Credit: OpenAI / Deedy

On Wednesday, a video from OpenAI’s newly launched Sora AI video generator went viral on social media, featuring a gymnast who sprouts extra limbs and briefly loses her head during what appears to be an Olympic-style floor routine.

As it turns out, the nonsensical synthesis errors in the video—what we like to call “jabberwockies”—hint at technical details about how AI video generators work and how they might get better in the future.

But before we dig into the details, let’s take a look at the video.

An AI-generated video of an impossible gymnast, created with OpenAI Sora.

In the video, we see a view of what looks like a floor gymnastics routine. The subject of the video flips and flails as new legs and arms rapidly and fluidly emerge and morph out of her twirling and transforming body. At one point, about 9 seconds in, she loses her head, and it reattaches to her body spontaneously.

“As cool as the new Sora is, gymnastics is still very much the Turing test for AI video,” wrote venture capitalist Deedy Das when he originally shared the video on X. The video inspired plenty of reaction jokes, such as this reply to a similar post on Bluesky: “hi, gymnastics expert here! this is not funny, gymnasts only do this when they’re in extreme distress.”

We reached out to Das, and he confirmed that he generated the video using Sora. He also provided the prompt, which was very long and split into four parts, generated by Anthropic’s Claude, using complex instructions like “The gymnast initiates from the back right corner, taking position with her right foot pointed behind in B-plus stance.”

“I’ve known for the last 6 months having played with text to video models that they struggle with complex physics movements like gymnastics,” Das told us in a conversation. “I had to try it [in Sora] because the character consistency seemed improved. Overall, it was an improvement because previously… the gymnast would just teleport away or change their outfit mid flip, but overall it still looks downright horrifying. We hoped AI video would learn physics by default, but that hasn’t happened yet!”

So what went wrong?

When examining how the video fails, you must first consider how Sora “knows” how to create anything that resembles a gymnastics routine. During the training phase, when the Sora model was created, OpenAI fed example videos of gymnastics routines (among many other types of videos) into a specialized neural network that associates the progression of images with text-based descriptions of them.

That type of training is a distinct phase that happens once before the model’s release. Later, when the finished model is running and you give a video-synthesis model like Sora a written prompt, it draws upon statistical associations between words and images to produce a predictive output. It’s continuously making next-frame predictions based on the last frame of the video. But Sora has another trick for attempting to preserve coherency over time. “By giving the model foresight of many frames at a time,” reads OpenAI’s Sora System Card, we’ve solved a challenging problem of making sure a subject stays the same even when it goes out of view temporarily.”

A still image from a moment where the AI-generated gymnast loses her head. It soon re-attaches to her body.

A still image from a moment where the AI-generated gymnast loses her head. It soon reattaches to her body. Credit: OpenAI / Deedy

Maybe not quite solved yet. In this case, rapidly moving limbs prove a particular challenge when attempting to predict the next frame properly. The result is an incoherent amalgam of gymnastics footage that shows the same gymnast performing running flips and spins, but Sora doesn’t know the correct order in which to assemble them because it’s pulling on statistical averages of wildly different body movements in its relatively limited training data of gymnastics videos, which also likely did not include limb-level precision in its descriptive metadata.

Sora doesn’t know anything about physics or how the human body should work, either. It’s drawing upon statistical associations between pixels in the videos in its training dataset to predict the next frame, with a little bit of look-ahead to keep things more consistent.

This problem is not unique to Sora. All AI video generators can produce wildly nonsensical results when your prompts reach too far past their training data, as we saw earlier this year when testing Runway’s Gen-3. In fact, we ran some gymnast prompts through the latest open source AI video model that may rival Sora in some ways, Hunyuan Video, and it produced similar twirling, morphing results, seen below. And we used a much simpler prompt than Das did with Sora.

An example from open source Chinese AI model Hunyuan Video with the prompt, “A young woman doing a complex floor gymnastics routine at the olympics, featuring running and flips.”

AI models based on transformer technology are fundamentally imitative in nature. They’re great at transforming one type of data into another type or morphing one style into another. What they’re not great at (yet) is producing coherent generations that are truly original. So if you happen to provide a prompt that closely matches a training video, you might get a good result. Otherwise, you may get madness.

As we wrote about image-synthesis model Stable Diffusion 3’s body horror generations earlier this year, “Basically, any time a user prompt homes in on a concept that isn’t represented well in the AI model’s training dataset, the image-synthesis model will confabulate its best interpretation of what the user is asking for. And sometimes that can be completely terrifying.”

For the engineers who make these models, success in AI video generation quickly becomes a question of how many examples (and how much training) you need before the model can generalize enough to produce convincing and coherent results. It’s also a question of metadata quality—how accurately the videos are labeled. In this case, OpenAI used an AI vision model to describe its training videos, which helped improve quality, but apparently not enough—yet.

We’re looking at an AI jabberwocky in action

In a way, the type of generation failure in the gymnast video is a form of confabulation (or hallucination, as some call it), but it’s even worse because it’s not coherent. So instead of calling it a confabulation, which is a plausible-sounding fabrication, we’re going to lean on a new term, “jabberwocky,” which Dictionary.com defines as “a playful imitation of language consisting of invented, meaningless words; nonsense; gibberish,” taken from Lewis Carroll’s nonsense poem of the same name. Imitation and nonsense, you say? Check and check.

We’ve covered jabberwockies in AI video before with people mocking Chinese video-synthesis models, a monstrously weird AI beer commercial, and even Will Smith eating spaghetti. They’re a form of misconfabulation where an AI model completely fails to produce a plausible output. This will not be the last time we see them, either.

How could AI video models get better and avoid jabberwockies?

In our coverage of Gen-3 Alpha, we called the threshold where you get a level of useful generalization in an AI model the “illusion of understanding,” where training data and training time reach a critical mass that produces good enough results to generalize across enough novel prompts.

One of the key reasons language models like OpenAI’s GPT-4 impressed users was that they finally reached a size where they had absorbed enough information to give the appearance of genuinely understanding the world. With video synthesis, achieving this same apparent level of “understanding” will require not just massive amounts of well-labeled training data but also the computational power to process it effectively.

AI boosters hope that these current models represent one of the key steps on the way to something like truly general intelligence (often called AGI) in text, or in AI video, what OpenAI and Runway researchers call “world simulators” or “world models” that somehow encode enough physics rules about the world to produce any realistic result.

Judging by the morphing alien shoggoth gymnast, that may still be a ways off. Still, it’s early days in AI video generation, and judging by how quickly AI image-synthesis models like Midjourney progressed from crude abstract shapes into coherent imagery, it’s likely video synthesis will have a similar trajectory over time. Until then, enjoy the AI-generated jabberwocky madness.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Twirling body horror in gymnastics video exposes AI’s flaws Read More »

ten-months-after-first-tease,-openai-launches-sora-video-generation-publicly

Ten months after first tease, OpenAI launches Sora video generation publicly

A music video by Canadian art collective Vallée Duhamel made with Sora-generated video. “[We] just shoot stuff and then use Sora to combine it with a more interesting, more surreal vision.”

During a livestream on Monday—during Day 3 of OpenAI’s “12 days of OpenAi”—Sora’s developers showcased a new “Explore” interface that allows people to browse through videos generated by others to get prompting ideas. OpenAI says that anyone can enjoy viewing the “Explore” feed for free, but generating videos requires a subscription.

They also showed off a new feature called “Storyboard” that allows users to direct a video with multiple actions in a frame-by-frame manner.

Safety measures and limitations

In addition to the release, OpenAI also publish Sora’s System Card for the first time. It includes technical details about how the model works and safety testing the company undertook prior to this release.

“Whereas LLMs have text tokens, Sora has visual patches,” OpenAI writes, describing the new training chunks as “an effective representation for models of visual data… At a high level, we turn videos into patches by first compressing videos into a lower-dimensional latent space, and subsequently decomposing the representation into spacetime patches.”

Sora also makes use of a “recaptioning technique”—similar to that seen in the company’s DALL-E 3 image generation, to “generate highly descriptive captions for the visual training data.” That, in turn, lets Sora “follow the user’s text instructions in the generated video more faithfully,” OpenAI writes.

Sora-generated video provided by OpenAI, from the prompt: “Loop: a golden retriever puppy wearing a superhero outfit complete with a mask and cape stands perched on the top of the empire state building in winter, overlooking the nyc it protects at night. the back of the pup is visible to the camera; his attention faced to nyc”

OpenAI implemented several safety measures in the release. The platform embeds C2PA metadata in all generated videos for identification and origin verification. Videos display visible watermarks by default, and OpenAI developed an internal search tool to verify Sora-generated content.

The company acknowledged technical limitations in the current release. “This early version of Sora will make mistakes, it’s not perfect,” said one developer during the livestream launch. The model reportedly struggles with physics simulations and complex actions over extended durations.

In the past, we’ve seen that these types of limitations are based on what example videos were used to train AI models. This current generation of AI video-synthesis models has difficulty generating truly new things, since the underlying architecture excels at transforming existing concepts into new presentations, but so far typically fails at true originality. Still, it’s early in AI video generation, and the technology is improving all the time.

Ten months after first tease, OpenAI launches Sora video generation publicly Read More »

adobe-unveils-ai-video-generator-trained-on-licensed-content

Adobe unveils AI video generator trained on licensed content

On Monday, Adobe announced Firefly Video Model, a new AI-powered text-to-video generation tool that can create novel videos from written prompts. It joins similar offerings from OpenAI, Runway, Google, and Meta in an increasingly crowded field. Unlike the competition, Adobe claims that Firefly Video Model is trained exclusively on licensed content, potentially sidestepping ethical and copyright issues that have plagued other generative AI tools.

Because of its licensed training data roots, Adobe calls Firefly Video Model “the first publicly available video model designed to be commercially safe.” However, the San Jose, California-based software firm hasn’t announced a general release date, and during a beta test period, it’s only granting access to people on a waiting list.

An example video of Adobe’s Firefly Video Model, provided by Adobe.

In the works since at least April 2023, the new model builds off of techniques Adobe developed for its Firefly image synthesis models. Like its text-to-image generator, which the company later integrated into Photoshop, Adobe hopes to aim Firefly Video Model at media professionals, such as video creators and editors. The company claims its model can produce footage that blends seamlessly with traditionally created video content.

Adobe unveils AI video generator trained on licensed content Read More »

is-china-pulling-ahead-in-ai-video-synthesis?-we-put-minimax-to-the-test

Is China pulling ahead in AI video synthesis? We put Minimax to the test

In the spirit of not cherry-picking any results, everything you see was the first generation we received for the prompt listed above it.

“A highly intelligent person reading ‘Ars Technica’ on their computer when the screen explodes”

“A cat in a car drinking a can of beer, beer commercial”

“Will Smith eating spaghetti

“Robotic humanoid animals with vaudeville costumes roam the streets collecting protection money in tokens”

“A basketball player in a haunted passenger train car with a basketball court, and he is playing against a team of ghosts”

“A herd of one million cats running on a hillside, aerial view”

“Video game footage of a dynamic 1990s third-person 3D platform game starring an anthropomorphic shark boy”

“A muscular barbarian breaking a CRT television set with a weapon, cinematic, 8K, studio lighting”

Limitations of video synthesis models

Overall, the Minimax video-01 results seen above feel fairly similar to Gen-3’s outputs, with some differences, like the lack of a celebrity filter on Will Smith (who sadly did not actually eat the spaghetti in our tests), and the more realistic cat hands and licking motion. Some results were far worse, like the one million cats and the Ars Technica reader.

Is China pulling ahead in AI video synthesis? We put Minimax to the test Read More »

openai’s-flawed-plan-to-flag-deepfakes-ahead-of-2024-elections

OpenAI’s flawed plan to flag deepfakes ahead of 2024 elections

OpenAI’s flawed plan to flag deepfakes ahead of 2024 elections

As the US moves toward criminalizing deepfakes—deceptive AI-generated audio, images, and videos that are increasingly hard to discern from authentic content online—tech companies have rushed to roll out tools to help everyone better detect AI content.

But efforts so far have been imperfect, and experts fear that social media platforms may not be ready to handle the ensuing AI chaos during major global elections in 2024—despite tech giants committing to making tools specifically to combat AI-fueled election disinformation. The best AI detection remains observant humans, who, by paying close attention to deepfakes, can pick up on flaws like AI-generated people with extra fingers or AI voices that speak without pausing for a breath.

Among the splashiest tools announced this week, OpenAI shared details today about a new AI image detection classifier that it claims can detect about 98 percent of AI outputs from its own sophisticated image generator, DALL-E 3. It also “currently flags approximately 5 to 10 percent of images generated by other AI models,” OpenAI’s blog said.

According to OpenAI, the classifier provides a binary “true/false” response “indicating the likelihood of the image being AI-generated by DALL·E 3.” A screenshot of the tool shows how it can also be used to display a straightforward content summary confirming that “this content was generated with an AI tool” and includes fields ideally flagging the “app or device” and AI tool used.

To develop the tool, OpenAI spent months adding tamper-resistant metadata to “all images created and edited by DALL·E 3” that “can be used to prove the content comes” from “a particular source.” The detector reads this metadata to accurately flag DALL-E 3 images as fake.

That metadata follows “a widely used standard for digital content certification” set by the Coalition for Content Provenance and Authenticity (C2PA), often likened to a nutrition label. And reinforcing that standard has become “an important aspect” of OpenAI’s approach to AI detection beyond DALL-E 3, OpenAI said. When OpenAI broadly launches its video generator, Sora, C2PA metadata will be integrated into that tool as well, OpenAI said.

Of course, this solution is not comprehensive because that metadata could always be removed, and “people can still create deceptive content without this information (or can remove it),” OpenAI said, “but they cannot easily fake or alter this information, making it an important resource to build trust.”

Because OpenAI is all in on C2PA, the AI leader announced today that it would join the C2PA steering committee to help drive broader adoption of the standard. OpenAI will also launch a $2 million fund with Microsoft to support broader “AI education and understanding,” seemingly partly in the hopes that the more people understand about the importance of AI detection, the less likely they will be to remove this metadata.

“As adoption of the standard increases, this information can accompany content through its lifecycle of sharing, modification, and reuse,” OpenAI said. “Over time, we believe this kind of metadata will be something people come to expect, filling a crucial gap in digital content authenticity practices.”

OpenAI joining the committee “marks a significant milestone for the C2PA and will help advance the coalition’s mission to increase transparency around digital media as AI-generated content becomes more prevalent,” C2PA said in a blog.

OpenAI’s flawed plan to flag deepfakes ahead of 2024 elections Read More »

openai-collapses-media-reality-with-sora,-a-photorealistic-ai-video-generator

OpenAI collapses media reality with Sora, a photorealistic AI video generator

Pics and it didn’t happen —

Hello, cultural singularity—soon, every video you see online could be completely fake.

Snapshots from three videos generated using OpenAI's Sora.

Enlarge / Snapshots from three videos generated using OpenAI’s Sora.

On Thursday, OpenAI announced Sora, a text-to-video AI model that can generate 60-second-long photorealistic HD video from written descriptions. While it’s only a research preview that we have not tested, it reportedly creates synthetic video (but not audio yet) at a fidelity and consistency greater than any text-to-video model available at the moment. It’s also freaking people out.

“It was nice knowing you all. Please tell your grandchildren about my videos and the lengths we went to to actually record them,” wrote Wall Street Journal tech reporter Joanna Stern on X.

“This could be the ‘holy shit’ moment of AI,” wrote Tom Warren of The Verge.

“Every single one of these videos is AI-generated, and if this doesn’t concern you at least a little bit, nothing will,” tweeted YouTube tech journalist Marques Brownlee.

For future reference—since this type of panic will some day appear ridiculous—there’s a generation of people who grew up believing that photorealistic video must be created by cameras. When video was faked (say, for Hollywood films), it took a lot of time, money, and effort to do so, and the results weren’t perfect. That gave people a baseline level of comfort that what they were seeing remotely was likely to be true, or at least representative of some kind of underlying truth. Even when the kid jumped over the lava, there was at least a kid and a room.

The prompt that generated the video above: “A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors.

Technology like Sora pulls the rug out from under that kind of media frame of reference. Very soon, every photorealistic video you see online could be 100 percent false in every way. Moreover, every historical video you see could also be false. How we confront that as a society and work around it while maintaining trust in remote communications is far beyond the scope of this article, but I tried my hand at offering some solutions back in 2020, when all of the tech we’re seeing now seemed like a distant fantasy to most people.

In that piece, I called the moment that truth and fiction in media become indistinguishable the “cultural singularity.” It appears that OpenAI is on track to bring that prediction to pass a bit sooner than we expected.

Prompt: Reflections in the window of a train traveling through the Tokyo suburbs.

OpenAI has found that, like other AI models that use the transformer architecture, Sora scales with available compute. Given far more powerful computers behind the scenes, AI video fidelity could improve considerably over time. In other words, this is the “worst” AI-generated video is ever going to look. There’s no synchronized sound yet, but that might be solved in future models.

How (we think) they pulled it off

AI video synthesis has progressed by leaps and bounds over the past two years. We first covered text-to-video models in September 2022 with Meta’s Make-A-Video. A month later, Google showed off Imagen Video. And just 11 months ago, an AI-generated version of Will Smith eating spaghetti went viral. In May of last year, what was previously considered to be the front-runner in the text-to-video space, Runway Gen-2, helped craft a fake beer commercial full of twisted monstrosities, generated in two-second increments. In earlier video-generation models, people pop in and out of reality with ease, limbs flow together like pasta, and physics doesn’t seem to matter.

Sora (which means “sky” in Japanese) appears to be something altogether different. It’s high-resolution (1920×1080), can generate video with temporal consistency (maintaining the same subject over time) that lasts up to 60 seconds, and appears to follow text prompts with a great deal of fidelity. So, how did OpenAI pull it off?

OpenAI doesn’t usually share insider technical details with the press, so we’re left to speculate based on theories from experts and information given to the public.

OpenAI says that Sora is a diffusion model, much like DALL-E 3 and Stable Diffusion. It generates a video by starting off with noise and “gradually transforms it by removing the noise over many steps,” the company explains. It “recognizes” objects and concepts listed in the written prompt and pulls them out of the noise, so to speak, until a coherent series of video frames emerge.

Sora is capable of generating videos all at once from a text prompt, extending existing videos, or generating videos from still images. It achieves temporal consistency by giving the model “foresight” of many frames at once, as OpenAI calls it, solving the problem of ensuring a generated subject remains the same even if it falls out of view temporarily.

OpenAI represents video as collections of smaller groups of data called “patches,” which the company says are similar to tokens (fragments of a word) in GPT-4. “By unifying how we represent data, we can train diffusion transformers on a wider range of visual data than was possible before, spanning different durations, resolutions, and aspect ratios,” the company writes.

An important tool in OpenAI’s bag of tricks is that its use of AI models is compounding. Earlier models are helping to create more complex ones. Sora follows prompts well because, like DALL-E 3, it utilizes synthetic captions that describe scenes in the training data generated by another AI model like GPT-4V. And the company is not stopping here. “Sora serves as a foundation for models that can understand and simulate the real world,” OpenAI writes, “a capability we believe will be an important milestone for achieving AGI.”

One question on many people’s minds is what data OpenAI used to train Sora. OpenAI has not revealed its dataset, but based on what people are seeing in the results, it’s possible OpenAI is using synthetic video data generated in a video game engine in addition to sources of real video (say, scraped from YouTube or licensed from stock video libraries). Nvidia’s Dr. Jim Fan, who is a specialist in training AI with synthetic data, wrote on X, “I won’t be surprised if Sora is trained on lots of synthetic data using Unreal Engine 5. It has to be!” Until confirmed by OpenAI, however, that’s just speculation.

OpenAI collapses media reality with Sora, a photorealistic AI video generator Read More »