On Friday, TriStar Pictures released Here, a $50 million Robert Zemeckis-directed film that used real time generative AI face transformation techniques to portray actors Tom Hanks and Robin Wright across a 60-year span, marking one of Hollywood’s first full-length features built around AI-powered visual effects.
The film adapts a 2014 graphic novel set primarily in a New Jersey living room across multiple time periods. Rather than cast different actors for various ages, the production used AI to modify Hanks’ and Wright’s appearances throughout.
The de-aging technology comes from Metaphysic, a visual effects company that creates real time face swapping and aging effects. During filming, the crew watched two monitors simultaneously: one showing the actors’ actual appearances and another displaying them at whatever age the scene required.
Metaphysic developed the facial modification system by training custom machine-learning models on frames of Hanks’ and Wright’s previous films. This included a large dataset of facial movements, skin textures, and appearances under varied lighting conditions and camera angles. The resulting models can generate instant face transformations without the months of manual post-production work traditional CGI requires.
Unlike previous aging effects that relied on frame-by-frame manipulation, Metaphysic’s approach generates transformations instantly by analyzing facial landmarks and mapping them to trained age variations.
“You couldn’t have made this movie three years ago,” Zemeckis told The New York Times in a detailed feature about the film. Traditional visual effects for this level of face modification would reportedly require hundreds of artists and a substantially larger budget closer to standard Marvel movie costs.
This isn’t the first film that has used AI techniques to de-age actors. ILM’s approach to de-aging Harrison Ford in 2023’s Indiana Jones and the Dial of Destiny used a proprietary system called Flux with infrared cameras to capture facial data during filming, then old images of Ford to de-age him in post-production. By contrast, Metaphysic’s AI models process transformations without additional hardware and show results during filming.
On Thursday, AI-startup Black Forest Labs announced the launch of its company and the release of its first suite of text-to-image AI models, called FLUX.1. The German-based company, founded by researchers who developed the technology behind Stable Diffusion and invented the latent diffusion technique, aims to create advanced generative AI for images and videos.
The launch of FLUX.1 comes about seven weeks after Stability AI’s troubled release of Stable Diffusion 3 Medium in mid-June. Stability AI’s offering faced widespread criticism among image-synthesis hobbyists for its poor performance in generating human anatomy, with users sharing examples of distorted limbs and bodies across social media. That problematic launch followed the earlier departure of three key engineers from Stability AI—Robin Rombach, Andreas Blattmann, and Dominik Lorenz—who went on to found Black Forest Labs along with latent diffusion co-developer Patrick Esser and others.
Black Forest Labs launched with the release of three FLUX.1 text-to-image models: a high-end commercial “pro” version, a mid-range “dev” version with open weights for non-commercial use, and a faster open-weights “schnell” version (“schnell” means quick or fast in German). Black Forest Labs claims its models outperform existing options like Midjourney and DALL-E in areas such as image quality and adherence to text prompts.
In our experience, the outputs of the two higher-end FLUX.1 models are generally comparable with OpenAI’s DALL-E 3 in prompt fidelity, with photorealism that seems close to Midjourney 6. They represent a significant improvement over Stable Diffusion XL, the team’s last major release under Stability (if you don’t count SDXL Turbo).
The FLUX.1 models use what the company calls a “hybrid architecture” combining transformer and diffusion techniques, scaled up to 12 billion parameters. Black Forest Labs said it improves on previous diffusion models by incorporating flow matching and other optimizations.
FLUX.1 seems competent at generating human hands, which was a weak spot in earlier image-synthesis models like Stable Diffusion 1.5 due to a lack of training images that focused on hands. Since those early days, other AI image generators like Midjourney have mastered hands as well, but it’s notable to see an open-weights model that renders hands relatively accurately in various poses.
We downloaded the weights file to the FLUX.1 dev model from GitHub, but at 23GB, it won’t fit in the 12GB VRAM of our RTX 3060 card, so it will need quantization to run locally (reducing its size), which reportedly (through chatter on Reddit) some people have already had success with.
Instead, we experimented with FLUX.1 models on AI cloud-hosting platforms Fal and Replicate, which cost money to use, though Fal offers some free credits to start.
Black Forest looks ahead
Black Forest Labs may be a new company, but it’s already attracting funding from investors. It recently closed a $31 million Series Seed funding round led by Andreessen Horowitz, with additional investments from General Catalyst and MätchVC. The company also brought on high-profile advisers, including entertainment executive and former Disney President Michael Ovitz and AI researcher Matthias Bethge.
“We believe that generative AI will be a fundamental building block of all future technologies,” the company stated in its announcement. “By making our models available to a wide audience, we want to bring its benefits to everyone, educate the public and enhance trust in the safety of these models.”
Speaking of “trust and safety,” the company did not mention where it obtained the training data that taught the FLUX.1 models how to generate images. Judging by the outputs we could produce with the model that included depictions of copyrighted characters, Black Forest Labs likely used a huge unauthorized image scrape of the Internet, possibly collected by LAION, an organization that collected the datasets that trained Stable Diffusion. This is speculation at this point. While the underlying technological achievement of FLUX.1 is notable, it feels likely that the team is playing fast and loose with the ethics of “fair use” image scraping much like Stability AI did. That practice may eventually attract lawsuits like those filed against Stability AI.
Though text-to-image generation is Black Forest’s current focus, the company plans to expand into video generation next, saying that FLUX.1 will serve as the foundation of a new text-to-video model in development, which will compete with OpenAI’s Sora, Runway’s Gen-3 Alpha, and Kuaishou’s Kling in a contest to warp media reality on demand. “Our video models will unlock precise creation and editing at high definition and unprecedented speed,” the Black Forest announcement claims.
On Wednesday, Stability AI released weights for Stable Diffusion 3 Medium, an AI image-synthesis model that turns text prompts into AI-generated images. Its arrival has been ridiculed online, however, because it generates images of humans in a way that seems like a step backward from other state-of-the-art image-synthesis models like Midjourney or DALL-E 3. As a result, it can churn out wild anatomically incorrect visual abominations with ease.
Hands have traditionally been a challenge for AI image generators due to lack of good examples in early training data sets, but more recently, several image-synthesis models seemed to have overcome the issue. In that sense, SD3 appears to be a huge step backward for the image-synthesis enthusiasts that gather on Reddit—especially compared to recent Stability releases like SD XL Turbo in November.
“It wasn’t too long ago that StableDiffusion was competing with Midjourney, now it just looks like a joke in comparison. At least our datasets are safe and ethical!” wrote one Reddit user.
AI image fans are so far blaming the Stable Diffusion 3’s anatomy fails on Stability’s insistence on filtering out adult content (often called “NSFW” content) from the SD3 training data that teaches the model how to generate images. “Believe it or not, heavily censoring a model also gets rid of human anatomy, so… that’s what happened,” wrote one Reddit user in the thread.
Basically, any time a user prompt homes in on a concept that isn’t represented well in the AI model’s training dataset, the image-synthesis model will confabulate its best interpretation of what the user is asking for. And sometimes that can be completely terrifying.
The release of Stable Diffusion 2.0 in 2022 suffered from similar problems in depicting humans well, and AI researchers soon discovered that censoring adult content that contains nudity can severely hamper an AI model’s ability to generate accurate human anatomy. At the time, Stability AI reversed course with SD 2.1 and SD XL, regaining some abilities lost by strongly filtering NSFW content.
Another issue that can occur during model pre-training is that sometimes the NSFW filter researchers use remove adult images from the dataset is too picky, accidentally removing images that might not be offensive and depriving the model of depictions of humans in certain situations. “[SD3] works fine as long as there are no humans in the picture, I think their improved nsfw filter for filtering training data decided anything humanoid is nsfw,” wrote one Redditor on the topic.
Using a free online demo of SD3 on Hugging Face, we ran prompts and saw similar results to those being reported by others. For example, the prompt “a man showing his hands” returned an image of a man holding up two giant-sized backward hands, although each hand at least had five fingers.
Stability first announced Stable Diffusion 3 in February, and the company has planned to make it available in a variety of different model sizes. Today’s release is for the “Medium” version, which is a 2 billion-parameter model. In addition to the weights being available on Hugging Face, they are also available for experimentation through the company’s Stability Platform. The weights are available for download and use for free under a non-commercial license only.
Soon after its February announcement, delays in releasing the SD3 model weights inspired rumors that the release was being held back due to technical issues or mismanagement. Stability AI as a company fell into a tailspin recently with the resignation of its founder and CEO, Emad Mostaque, in March and then a series of layoffs. Just prior to that, three key engineers—Robin Rombach, Andreas Blattmann, and Dominik Lorenz—left the company. And its troubles go back even farther, with news of the company’s dire financial position lingering since 2023.
To some Stable Diffusion fans, the failures with Stable Diffusion 3 Medium are a visual manifestation of the company’s mismanagement—and an obvious sign of things falling apart. Although the company has not filed for bankruptcy, some users made dark jokes about the possibility after seeing SD3 Medium:
“I guess now they can go bankrupt in a safe and ethically [sic] way, after all.”