Author name: Mike M.

how-archaeologists-reconstructed-the-burning-of-jerusalem-in-586-bce

How archaeologists reconstructed the burning of Jerusalem in 586 BCE

On the seventh day of Christmas —

Hebrew bible is only surviving account of siege that laid waste to Solomon’s Temple.

How archaeologists reconstructed the burning of Jerusalem in 586 BCE

Assaf Peretz/Israel Antiquities Authority

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2020, each day from December 25 through January 5. Today: Archaeologists relied on chemical clues and techniques like FTIR spectroscopy and archaeomagnetic analysis to reconstruct the burning of Jerusalem by Babylonian forces around 586 BCE.

Archaeologists have uncovered new evidence in support of Biblical accounts of the siege and burning of the city of Jerusalem by the Babylonians around 586 BCE, according to a September paper published in the Journal of Archaeological Science.

The Hebrew bible contains the only account of this momentous event, which included the destruction of Solomon’s Temple. “The Babylonian chronicles from these years were not preserved,” co-author Nitsan Shalom of Tel Aviv University in Israel told New Scientist. According to the biblical account, “There was a violent and complete destruction, the whole city was burned and it stayed completely empty, like the descriptions you see in [the Book of] Lamentations about the city deserted and in complete misery.”

Judah was a vassal kingdom of Babylon during the late 7th century BCE, under the rule of Nebuchadnezzar II. This did not sit well with Judah’s king, Jehoiakim, who revolted against the Babylonian king in 601 BCE despite being warned not to do so by the prophet Jeremiah. He stopped paying the required tribute and sided with Egypt when Nebuchadnezzar tried (and failed) to in invade that country.  Jehoiakim died and his son Jeconiah succeeded him when Nebuchadnezzar’s forces besieged Jerusalem in 597 BCE. The city was pillaged and Jeconiah surrendered and was deported to Babylon for his trouble, along with a substantial portion of Judah’s population. (The Book of Kings puts the number at 10,000.) His uncle Zedekiah became king of Judah.

Zedekiah also chafed under Babylonian rule and revolted in turn, refusing to pay the required tribute and seeking alliance with the Egyptian pharaoh Hophra. This resulted in a brutal 30-month siege by Nebuchadnezzar’s forces against Judah and its capital, Jerusalem. Eventually the Babylonians prevailed again, breaking through the city walls to conquer Jerusalem. Zedekiah was forced to watch his sons killed and was then blinded, bound, and taken to Babylon as a prisoner. This time Nebuchadnezzar was less merciful and ordered his troops to completely destroy Jerusalem and pull down the wall around 586 BCE.

There is archaeological evidence to support the account of the city being destroyed by fire, along with nearby villages and towns on the western border. Three residential structures were excavated between 1978 and 1982 and found to contain burned wooden beams dating to around 586 BCE. Archaeologists also found ash and burned wooden beams from the same time period when they excavated several structures at the Giv’ati Parking Lot archaeological site, close to the assumed location of Solomon’s Temple. Samples taken from a plaster floor showed exposure to high temperatures of at least 600 degrees Celsius

Aerial view of the excavation site in Jerusalem, at the foot of the Temple Mount

Enlarge / Aerial view of the excavation site in Jerusalem, at the foot of the Temple Mount

Assaf Peretz/Israel Antiquities Authority

However, it wasn’t possible to determine from that evidence whether the fires were intentional or accidental, or where the fire started if it was indeed intentional. For this latest research, Shalom and her colleagues focused on the two-story Building 100 at the Giv’ati Parking Lot site. They used Fourier transform infrared (FTIR) spectroscopy—which measures the absorption of infrared light to determine to what degree a sample had been heated—and archaeomagnetic analysis, which determines whether samples containing magnetic minerals were sufficiently heated to reorient those compounds to a new magnetic north.

The analysis revealed varying degrees of exposure to high-temperature fire in three rooms (designated A, B, and C) on the bottom level of Building 100, with Room C showing the most obvious evidence. This might have been a sign that Room C was the ignition point, but there was no fire path; the burning of Room C appeared to be isolated. Combined with an earlier 2020 study on segments of the second level of the building, the authors concluded that several fires were lit in the building and the fires burned strongest in the upper floors, except for that “intense local fire” in Room C on the first level.

“When a structure burns, heat rises and is concentrated below the ceiling,” the authors wrote. “The walls and roof are therefore heated to higher temperatures than the floor.” The presence of charred beams on the floors suggest this was indeed the case: most of the heat rose to the ceiling, burning the beams until they collapsed to the floors, which otherwise were subjected to radiant heat. But the extent of the debris was likely not caused just by that collapse, suggesting that the Babylonians deliberately went back in and knocked down any remaining walls.

Furthermore, “They targeted the more important, the more famous buildings in the city,” Shalom told New Scientist, rather than destroying everything indiscriminately. “2600 years later, we’re still mourning the temple.”

While they found no evidence of additional fuels that might have served as accelerants, “we may assume the fire was intentionally ignited  due to its widespread presence in all rooms and both stories of the building,” Shalom et al. concluded. “The finds within the rooms indicate there was enough flammable material (vegetal and wooden items and construction material) to make additional fuel unnecessary. The widespread presence of charred remains suggests a deliberate destruction by fire…. [T]he spread of the fire and the rapid collapse of the building indicate that the destroyers invested great efforts to completely demolish the building and take it out of use.”

DOI: Journal of Archaeological Science, 2023. 10.1016/j.jas.2023.105823  (About DOIs).

How archaeologists reconstructed the burning of Jerusalem in 586 BCE Read More »

a-cat-video-highlighted-a-big-year-for-lasers-in-space

A cat video highlighted a big year for lasers in space

Pew Pew —

NASA has invested more than $700 million in testing laser communications in space.

Taters, the orange tabby cat of a Jet Propulsion Laboratory employee, stars in a video beamed from deep space by NASA's Psyche spacecraft. The graphics illustrate several features from the tech demo, such as Psyche’s orbital path, Palomar’s telescope dome, and technical information about the laser and its data bit rate. Tater’s heart rate, color, and breed are also on display.

Enlarge / Taters, the orange tabby cat of a Jet Propulsion Laboratory employee, stars in a video beamed from deep space by NASA’s Psyche spacecraft. The graphics illustrate several features from the tech demo, such as Psyche’s orbital path, Palomar’s telescope dome, and technical information about the laser and its data bit rate. Tater’s heart rate, color, and breed are also on display.

It’s been quite a year for laser communications in space. In October and November, NASA launched two pioneering demonstrations to test high-bandwidth optical communication links, and these tech demos are now showing some initial results.

On December 11, a laser communications terminal aboard NASA’s Psyche spacecraft on the way to an asteroid linked up with a receiver in Southern California. The near-infrared laser beam contained an encoded message in the form of a 15-second ultra-high-definition video showing a cat bouncing around a sofa, chasing the light of a store-bought laser toy.

Laser communications offer the benefit of transmitting data at a higher rate than achievable with conventional radio links. In fact, the Deep Space Optical Communications (DSOC) experiment on the Psyche spacecraft is testing technologies capable of sending data at rates 10 to 100 times greater than possible on prior missions.

“We’re looking to increase the amount of data we can get down to Earth, and that has a lot of advantages to us,” said Jeff Volosin, acting deputy associate administrator for NASA space communications and navigation program, before the launch of Psyche earlier this year.

Now, DSOC has set a record for the farthest distance a high-definition video has streamed from space. At the time, Psyche was traveling 19 million miles (31 kilometers) from Earth, about 80 times the distance between Earth and the Moon. Traveling at the speed of light, the video signal took 101 seconds to reach Earth, sent at the system’s maximum bit rate of 267 megabits per second, NASA said.

A playful experiment

After reaching the receiver at Palomar Observatory in San Diego County, each video frame was transmitted “live” to NASA’s Jet Propulsion Laboratory in Pasadena, California, where it was played in real time, according to NASA.

“One of the goals is to demonstrate the ability to transmit broadband video across millions of miles. Nothing on Psyche generates video data, so we usually send packets of randomly generated test data,” said Bill Klipstein, the tech demo’s project manager at JPL, in a statement. “But to make this significant event more memorable, we decided to work with designers at JPL to create a fun video, which captures the essence of the demo as part of the Psyche mission.”

The video of Taters, the orange tabby cat of a JPL employee, was recorded before the launch of Psyche and stored on the spacecraft for this demonstration. The robotic probe launched on October 13 aboard a SpaceX Falcon Heavy rocket, with the primary goal of flying to the asteroid Psyche, a metal-rich world in the asteroid belt between the orbits of Mars and Jupiter.

It will take six years for the Psyche probe to reach its destination, and NASA tacked on a laser communications experiment to help keep the spacecraft busy during the cruise. Since the launch in October, ground teams at JPL switched on the Deep Space Optical Communications (DSOC) experiment and ran it through some early tests.

One of the most significant technical challenges involved in the DSOC experiment was aligning the 8.6-inch (22-centimeter) optical telescope aboard Psyche with a transmitter and receiver fitted to ground-based telescopes in California and vice versa. Because Psyche is speeding through deep space, this problem is akin to trying to hit a dime from a mile away while the dime is moving, according to Abi Biswas, DSOC’s project technologist at JPL.

Once you achieve that feat, the signal that is received is still very weak and therefore requires very sensitive detectors and processing electronics which can take that signal and extract information that’s encoded in it,” Biswas said.

The telescope aboard Psyche is mounted on an isolation-and-pointing assembly to stabilize the optics and isolate them from spacecraft vibrations, according to NASA. This is necessary to eliminate jitters that could prevent a stable laser lock between Earth and the Psyche spacecraft.

“What optical or laser communications allows you is to achieve very high data rates, but on the downside, it’s a very narrow laser beam that requires very accurate pointing control,” Biswas told reporters before the launch. “For example, the platform disturbance from a typical spacecraft would throw off the pointing, so you need to actively isolate from it or control against it.

“For near-Earth missions, you can just control against it because you have enough control bandwidth,” he said. “From deep space, where the signals received are very weak, you don’t have that much control bandwidth, so you have to isolate from the disturbance.”

The Deep Space Optical Communications (DSOC) experiment is mounted on NASA's Psyche spacecraft on the way to an asteroid. The inset image shows the mirror of the instrument's telescope for receiving and transmitting laser signals.

Enlarge / The Deep Space Optical Communications (DSOC) experiment is mounted on NASA’s Psyche spacecraft on the way to an asteroid. The inset image shows the mirror of the instrument’s telescope for receiving and transmitting laser signals.

There’s another drawback of direct-to-Earth laser communications from space. Cloud cover over transmitting and receiving telescopes on Earth could block signals, so an operational optical communications network will require several ground nodes at different locations worldwide, ideally positioned in areas known for clear skies.

A cat video highlighted a big year for lasers in space Read More »

spacex-launches-two-rockets—three-hours-apart—to-close-out-a-record-year

SpaceX launches two rockets—three hours apart—to close out a record year

SpaceX's Falcon Heavy rocket lifted off Thursday night from NASA's Kennedy Space Center in Florida.

Enlarge / SpaceX’s Falcon Heavy rocket lifted off Thursday night from NASA’s Kennedy Space Center in Florida.

It seems like SpaceX did everything this year but launch 100 times.

On Thursday night, the launch company sent two more rockets into orbit from Florida. One was a Falcon Heavy, the world’s most powerful rocket in commercial service, carrying the US military’s X-37B spaceplane from a launch pad at NASA’s Kennedy Space Center at 8: 07 pm EST (01: 07 UTC). Less than three hours later, at 11: 01 pm EST (04: 01 UTC), SpaceX’s workhorse Falcon 9 launcher took off a few miles to the south with a payload of 23 Starlink Internet satellites.

The Falcon Heavy’s two side boosters and the Falcon 9’s first stage landed back on Earth for reuse.

These were SpaceX’s final launches of 2023. SpaceX ends the year with 98 flights, including 91 Falcon 9s, five Falcon Heavy rockets, and two test launches of the giant new Super Heavy-Starship rocket. These flights were spread across four launch pads in Florida, California, and Texas.

Elon Musk, SpaceX’s founder and CEO, set a goal of 100 launches this year, up from the company’s previous record of 61 in 2022. For a while, it looked like SpaceX was on track to accomplish the feat, but a spate of bad weather and technical problems with the final Falcon Heavy launch of the year kept the company short of 100 flights.

King of ‘upmass’

“Congrats to the entire Falcon team at SpaceX on a record breaking 96 launches in 2023!” wrote Jon Edwards, vice president of Falcon launch vehicles at SpaceX, on the social media platform X. “I remember when Elon Musk first threw out a goal of 100 launches as a thought experiment, intended to unlock our thinking as to how we might accelerate Falcon across all levels of production and launch.

“Only a few years later and here we are,” Edwards wrote. “I’m so incredibly proud to work with the best team on Earth, and so excited to see what we achieve next year.”

It’s important to step back and put these numbers in context. No other family of orbit-class rockets has ever flown more than 63 times in a year. SpaceX’s Falcon rockets have now exceeded this number by roughly 50 percent. SpaceX’s competitors in the United States, such as United Launch Alliance and Rocket Lab, managed far fewer flights in 2023. ULA had three missions, and Rocket Lab launched its small Electron booster 10 times.

Nearly two-thirds of SpaceX’s missions this year were dedicated to delivering satellites to orbit for SpaceX’s Starlink broadband network, a constellation that now numbers more than 5,000 spacecraft.

SpaceX also launched five missions with the Falcon Heavy rocket, created by aggregating three Falcon 9 rocket boosters together. Highlights from SpaceX’s 2023 Falcon launch schedule included three crew missions to the International Space Station, and the launch of NASA’s Psyche mission to explore a metallic asteroid.

In all, SpaceX’s Falcon rockets hauled approximately 1,200 metric tons, or more than 2.6 million pounds, of payload mass into orbit this year. This “upmass” is equivalent to nearly three International Space Stations. Most of this was made up of mass-produced Starlink satellites.

SpaceX launches two rockets—three hours apart—to close out a record year Read More »

these-scientists-explored-the-good-vibrations-of-the-bundengan-and-didgeridoo

These scientists explored the good vibrations of the bundengan and didgeridoo

On the fifth day of Christmas —

Their relatively simple construction produces some surprisingly complicated physics.

Indonesian performers onstage with one playing a bundengan

Enlarge / The bundengan (left) began as a combined shelter/instrument for duck hunters but it is now often played onstage.

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2020, each day from December 25 through January 5. Today: the surprisingly complex physics of two simply constructed instruments: the Indonesian bundengan and the Australian Aboriginal didgeridoo (or didjeridu).

The bundengan is a rare, endangered instrument from Indonesia that can imitate the sound of metallic gongs and cow-hide drums (kendangs) in a traditional gamelan ensemble. The didgeridoo is an iconic instrument associated with Australian Aboriginal culture that produces a single, low-pitched droning note that can be continuously sustained by skilled players. Both instruments are a topic of scientific interest because their relatively simple construction produces some surprisingly complicated physics. Two recent studies into their acoustical properties were featured at an early December meeting of the Acoustical Society of America, held in Sydney, Australia, in conjunction with the Australian Acoustical Society.

The bundengan originated with Indonesian duck hunters as protection from rain and other adverse conditions while in the field, doubling as a musical instrument to pass the time. It’s a half-dome structure woven out of bamboo splits to form a lattice grid, crisscrossed at the top to form the dome. That dome is then coated with layers of bamboo sheaths held in place with sugar palm fibers. Musicians typically sit cross-legged inside the dome-shaped resonator and pluck the strings and bars to play. The strings produce metallic sounds while the plates inside generate percussive drum-like sounds.

Gea Oswah Fatah Parikesit of Universitas Gadja Mada in Indonesia has been studying the physics and acoustics of the bundengan for several years now. And yes, he can play the instrument. “I needed to learn to do the research,” he said during a conference press briefing. “It’s very difficult because you have two different blocking styles for the right and left hand sides. The right hand is for the melody, for the string, and the left is for the rhythm, to pluck the chords.”

Much of Parikesit’s prior research on the bundengan focused on the unusual metal/percussive sound of the strings, especially the critical role played by the placement of bamboo clips. He used computational simulations of the string vibrations to glean insight on how the specific gong-like sound was produced, and how those vibrations change with the addition of bamboo clips located at different sections of the string. He found that adding the clips produces two vibrations of different frequencies at different locations on the string, with the longer section having a high frequency vibration compared to the lower frequency vibration of the shorter part of the string. This is the key to making the gong-like sound.

This time around, Parikesit was intrigued by the fact many bundengan musicians have noted the instrument sounds better wet. In fact, several years ago, Parikesit attended a bundengan concert in Melbourne during the summer when it was very hot and dry—so much so that the musicians brought their own water spray bottles to ensure the instruments stayed (preferably) fully wet.

A bundengan is a portable shelter woven from bamboo, worn by Indonesian duck herders who often outfit it to double as a musical instrument.

Enlarge / A bundengan is a portable shelter woven from bamboo, worn by Indonesian duck herders who often outfit it to double as a musical instrument.

Gea Oswah Fatah Parikesit

“A key element between the dry and wet versions of the bundengan is the bamboo sheaths—the material used to layer the wall of the instrument,” Parokesit said. “When the bundengan is dry, the bamboo sheaths open and that results in looser connections between neighboring sheaths. When the bundengan is wet, the sheaths tend to form a curling shape, but because they are held by ropes, they form tight connections between the neighboring sheaths.”

The resulting tension allows the sheaths to vibrate together. That has a significant impact on the instrument’s sound, taking on a “twangier” quality when dry and a more of metallic gong sound when it is wet. Parikesit has tried making bundengans with other materials: paper, leaves, even plastics. But none of those produce the same sound quality as the bamboo sheaths. He next plans to investigate other musical instruments made from bamboo sheaths.“As an Indonesian, I have extra motivation because the bundengan is a piece of our cultural heritage,” Parikesit said. “I am trying my best to support the conservation and documentation of the bundengan and other Indonesian endangered instruments.”

Coupling with the human vocal tract

Meanwhile, John Smith of the University of New South Wales is equally intrigued by the physics and acoustics of the didgeridoo. The instrument is constructed from the trunk or large branches of the eucalyptus tree. The trick is to find a live tree with lots of termite activity, such that the trunk has been hollowed out leaving just the living sapwood shell. A suitably hollow trunk is then cut down, cleaned out, the bark removed, the ends trimmed, and the exterior shaped into a long cylinder or cone to produce the final instrument. The longer the instrument, the lower the pitch or key.

Players will vibrate their lips to play the didgeridoo in a manner similar to lip valve instruments like trumpets or trombones, except those use a small mouthpiece attached to the instrument as an interface. (Sometimes a beeswax rim is added to a didgeridoo mouthpiece end.) Players typically use circular breathing to maintain that continuous low-pitched drone for several minutes, basically inhaling through the nose and using air stored in the puffed cheeks to keep producing the sound. It’s the coupling of the instrument with the human vocal tract that makes the physics so complex, per Smith.

Smith was interested in investigating how changes in the configuration of the vocal tract produced timbral changes in the rhythmic pattern of the sounds produced. To do so, “We needed to develop a technique that could measure the acoustic properties of the player’s vocal tract while playing,” Smith said during the same press briefing. “This involved injecting a broadband signal into the corner of the player’s mouth and using a microphone to record the response.” That enabled Smith and his cohorts to record the vocal tract impedance in different configurations in the mouth.

Producing complex sounds with the didjeridu requires creating and manipulating resonances inside the vocal tract.

Enlarge / Producing complex sounds with the didjeridu requires creating and manipulating resonances inside the vocal tract.

Kate Callas

The results: “We showed that strong resonances in the vocal tract can suppress bands of frequencies in the output sound,” said Smith. “The remaining strong bands of frequencies, called formants, are noticed by our hearing because they fall in the same ranges as the formants we use in speech. It’s a bit like a sculptor removing marble, and we observe the bits that are left behind.”

Smith et al. also noted that the variations in timbre arise from the player singing while playing, or imitating animal sounds (such as the dingo or the kookaburra), which produces many new frequencies in the output sound. To measure the contact between vocal folds, they placed electrodes on either side of a player’s throat and zapped them with a small high frequency electric current. They simultaneously measured lip movement with another pair of electrics above and below the lips. Both types of vibrations affect the flow of air to produce the new frequencies.

As for what makes a desirable didgeridoo that appeals to players, acoustic measurements on a set of 38 such instruments—with the quality of each rated by seven experts in seven different subjective categories—produced a rather surprising result. One might think players would prefer instruments with very strong resonances but the opposite turned out to be true. Instruments with stronger resonances were ranked the worst, while those with weaker resonances rated more highly.  Smith, for one, thinks this makes sense. “This means that their own vocal tract resonance can dominate the timbre of the notes,” he said.

These scientists explored the good vibrations of the bundengan and didgeridoo Read More »

this-bird-is-like-a-gps-for-honey

This bird is like a GPS for honey

Show me the honey —

The honeyguide recognizes calls made by different human groups.

A bird perched on a wall in front of an urban backdrop.

Enlarge / A greater honeyguide

With all the technological advances humans have made, it may seem like we’ve lost touch with nature—but not all of us have. People in some parts of Africa use a guide more effective than any GPS system when it comes to finding beeswax and honey. This is not a gizmo, but a bird.

The Greater Honeyguide (highly appropriate name), Indicator indicator (even more appropriate scientific name), knows where all the beehives are because it eats beeswax. The Hadza people of Tanzania and Yao people of Mozambique realized this long ago. Hadza and Yao honey hunters have formed a unique relationship with this bird species by making distinct calls, and the honeyguide reciprocates with its own calls, leading them to a hive.

Because the Hadza and Yao calls differ, zoologist Claire Spottiswoode of the University of Cambridge and anthropologist Brian Wood of UCLA wanted to find out if the birds respond generically to human calls, or are attuned to their local humans. They found that the birds are much more likely to respond to a local call, meaning that they have learned to recognize that call.

Come on, get that honey

To see which sound the birds were most likely to respond to, Spottiswoode and Wood played three recordings, starting with the local call. The Yao honeyguide call is what the researchers describe as “a loud trill followed by a grunt (‘brrrr-hm’) while the Hadza call is more of “a melodic whistle,” as they say in a study recently published in Science. The second recording they would play was the foreign call, which would be the Yao call in Hadza territory and vice versa.

The third recording was an unrelated human sound meant to test whether the human voice alone was enough for a honeyguide to follow. Because Hadza and Yao voices sound similar, the researchers would alternate among recordings of honey hunters speaking words such as their names.

So which sounds were the most effective cues for honeyguides to partner with humans? In Tanzania, local Hadza calls were three times more likely to initiate a partnership with a honeyguide than Yao calls or human voices. Local Yao calls were also the most successful in Mozambique, where, in comparison to Hadza calls and human voices, they were twice as likely to elicit a response that would lead to a cooperative effort to search for a beehive. Though honeyguides did sometimes respond to the other sounds, and were often willing to cooperate when hearing them, it became clear that the birds in each region had learned a local cultural tradition that had become just as much a part of their lives as those of the humans who began it.

Now you’re speaking my language

There is a reason that honey hunters in both the Hadza and Yao tribes told Wood and Spottiswoode that they have never changed their calls and will never change them. If they did, they’d be unlikely to gather nearly as much honey.

How did this interspecies communication evolve? Other African cultures besides the Hadza and Yao have their own calls to summon a honeyguide. Why do the types of calls differ? The researchers do not think these calls came about randomly.

Both the Hadza and Yao people have their own unique languages, and sounds from them may have been incorporated into their calls. But there is more to it than that. The Hadza often hunt animals when hunting for honey. Therefore, the Hadza don’t want their calls to be recognized as human, or else the prey they are after might sense a threat and flee. This may be why they use whistles to communicate with honeyguides—by sounding like birds, they can both attract the honeyguides and stalk prey without being detected.

In contrast, the Yao do not hunt mammals, relying mostly on agriculture and fishing for food. This, along with the fact that they try to avoid potentially dangerous creatures such as lions, rhinos, and elephants, and can explain why they use recognizably human vocalizations to call honeyguides. Human voices may scare these animals away, so Yao honey hunters can safely seek honey with their honeyguide partners. These findings show that cultural diversity has had a significant influence on calls to honeyguides.

While animals might not literally speak our language, the honeyguide is just one of many species that has its own way of communicating with us. They can even learn our cultural traditions.

“Cultural traditions of consistent behavior are widespread in non-human animals and could plausibly mediate other forms of interspecies cooperation,” the researchers said in the same study.

Honeyguides start guiding humans as soon as they begin to fly, and this knack, combined with learning to answer traditional calls and collaborate with honey hunters, works well for both human and bird. Maybe they are (in a way) speaking our language.

Science, 2023.  DOI: 10.1126/science.adh412

This bird is like a GPS for honey Read More »

ai-created-“virtual-influencers”-are-stealing-business-from-humans

AI-created “virtual influencers” are stealing business from humans

digital influencer

Enlarge / Aitana Lopez, an AI-generated influencer, has convinced many social media users she is real.

FT montage/TheClueless/GettyImages

Pink-haired Aitana Lopez is followed by more than 200,000 people on social media. She posts selfies from concerts and her bedroom, while tagging brands such as hair care line Olaplex and lingerie giant Victoria’s Secret.

Brands have paid about $1,000 a post for her to promote their products on social media—despite the fact that she is entirely fictional.

Aitana is a “virtual influencer” created using artificial intelligence tools, one of the hundreds of digital avatars that have broken into the growing $21 billion content creator economy.

Their emergence has led to worry from human influencers their income is being cannibalized and under threat from digital rivals. That concern is shared by people in more established professions that their livelihoods are under threat from generative AI—technology that can spew out humanlike text, images and code in seconds.

But those behind the hyper-realistic AI creations argue they are merely disrupting an overinflated market.

“We were taken aback by the skyrocketing rates influencers charge nowadays. That got us thinking, ‘What if we just create our own influencer?’” said Diana Núñez, co-founder of the Barcelona-based agency The Clueless, which created Aitana. “The rest is history. We unintentionally created a monster. A beautiful one, though.”

Over the past few years, there have been high-profile partnerships between luxury brands and virtual influencers, including Kim Kardashian’s make-up line KKW Beauty with Noonoouri, and Louis Vuitton with Ayayi.

Instagram analysis of an H&M advert featuring virtual influencer Kuki found that it reached 11 times more people and resulted in a 91 percent decrease in cost per person remembering the advert, compared with a traditional ad.

AI-created “virtual influencers” are stealing business from humans Read More »

how-watching-beavers-from-space-can-help-drought-ridden-areas-bounce-back

How watching beavers from space can help drought-ridden areas bounce back

Busy as a… —

An algorithm can spot beaver ponds from satellite imagery.

Beaver on a dam

Enlarge / Where beavers set up home, the dams they build profoundly change the landscape.

For the first time in four centuries, it’s good to be a beaver. Long persecuted for their pelts and reviled as pests, the dam-building rodents are today hailed by scientists as ecological saviors. Their ponds and wetlands store water in the face of drought, filter out pollutants, furnish habitat for endangered species, and fight wildfires. In California, Castor canadensis is so prized that the state recently committed millions to its restoration.

While beavers’ benefits are indisputable, however, our knowledge remains riddled with gaps. We don’t know how many are out there, or which direction their populations are trending, or which watersheds most desperately need a beaver infusion. Few states have systematically surveyed them; moreover, many beaver ponds are tucked into remote streams far from human settlements, where they’re near-impossible to count. “There’s so much we don’t understand about beavers, in part because we don’t have a baseline of where they are,” says Emily Fairfax, a beaver researcher at the University of Minnesota.

But that’s starting to change. Over the past several years, a team of beaver scientists and Google engineers have been teaching an algorithm to spot the rodents’ infrastructure on satellite images. Their creation has the potential to transform our understanding of these paddle-tailed engineers—and help climate-stressed states like California aid their comeback. And while the model hasn’t yet gone public, researchers are already salivating over its potential. “All of our efforts in the state should be taking advantage of this powerful mapping tool,” says Kristen Wilson, the lead forest scientist at the conservation organization the Nature Conservancy. “It’s really exciting.”

The beaver-mapping model is the brainchild of Eddie Corwin, a former member of Google’s real-estate sustainability group. Around 2018, Corwin began to contemplate how his company might become a better steward of water, particularly the many coastal creeks that run past its Bay Area offices. In the course of his research, Corwin read Water: A Natural History, by an author aptly named Alice Outwater. One chapter dealt with beavers, whose bountiful wetlands, Outwater wrote, “can hold millions of gallons of water” and “reduce flooding and erosion downstream.” Corwin, captivated, devoured other beaver books and articles, and soon started proselytizing to his friend Dan Ackerstein, a sustainability consultant who works with Google. “We both fell in love with beavers,” Corwin says.

Corwin’s beaver obsession met a receptive corporate culture. Google’s employees are famously encouraged to devote time to passion projects, the policy that produced Gmail; Corwin decided his passion was beavers. But how best to assist the buck-toothed architects? Corwin knew that beaver infrastructure—their sinuous dams, sprawling ponds, and spidery canals—is often so epic it can be seen from space. In 2010, a Canadian researcher discovered the world’s longest beaver dam, a stick-and-mud bulwark that stretches more than a half-mile across an Alberta park, by perusing Google Earth. Corwin and Ackerstein began to wonder whether they could contribute to beaver research by training a machine-learning algorithm to automatically detect beaver dams and ponds on satellite imagery—not one by one, but thousands at a time, across the surface of an entire state.

After discussing the concept with Google’s engineers and programmers, Corwin and Ackerstein decided it was technically feasible. They reached out next to Fairfax, who’d gained renown for a landmark 2020 study showing that beaver ponds provide damp, fire-proof refuges in which other species can shelter during wildfires. In some cases, Fairfax found, beaver wetlands even stopped blazes in their tracks. The critters were such talented firefighters that she’d half-jokingly proposed that the US Forest Service change its mammal mascot—farewell, Smoky Bear, and hello, Smoky Beaver.

Fairfax was enthusiastic about the pond-mapping idea. She and her students already used Google Earth to find beaver dams to study within burned areas. But it was a laborious process, one that demanded endless hours of tracing alpine streams across screens in search of the bulbous signature of a beaver pond. An automated beaver-finding tool, she says, could “increase the number of fires I can analyze by an order of magnitude.”

With Fairfax’s blessing, Corwin, Ackerstein, and a team of programmers set about creating their model. The task, they decided, was best suited to a convolutional neural network, a type of algorithm that essentially tries to figure out whether a given chunk of geospatial data includes a particular object—whether a stretch of mountain stream contains a beaver dam, say. Fairfax and some obliging beaverologists from Utah State University submitted thousands of coordinates for confirmed dams, ponds, and canals, which the Googlers matched up with their own high-resolution images to teach the model to recognize the distinctive appearance of beaverworks. The team also fed the algorithm negative data—images of beaverless streams and wetlands—so that it would know what it wasn’t looking for. They dubbed their model the Earth Engine Automated Geospatial Elements Recognition, or EEAGER—yes, as in “eager beaver.”

Training EEAGER to pick out beaver ponds wasn’t easy. The American West was rife with human-built features that seemed practically designed to fool a beaver-seeking model. Curving roads reminded EEAGER of winding dams; the edges of man-made reservoirs registered as beaver-built ponds. Most confounding, weirdly, were neighborhood cul-de-sacs, whose asphalt circles, surrounded by gray strips of sidewalk, bore an uncanny resemblance to a beaver pond fringed by a dam. “I don’t think anybody anticipated that suburban America was full of what a computer would think were beaver dams,” Ackerstein says.

As the researchers pumped more data into EEAGER, it got better at distinguishing beaver ponds from impostors. In May 2023, the Google team, along with beaver researchers Fairfax, Joe Wheaton, and Wally Macfarlane, published a paper in the Journal of Geophysical Research Biogeosciencesdemonstrating the model’s efficacy. The group fed EEAGER more than 13,000 landscape images with beaver dams from seven western states, along with some 56,000 dam-less locations. The model categorized the landscape accurately—beaver dammed or not—98.5 percent of the time.

That statistic, granted, oversells EEAGER’s perfection. The Google team opted to make the model fairly liberal, meaning that, when it predicts whether or not a pixel of satellite imagery contains a beaver dam, it’s more likely to err on the side of spitting out a false positive. EEAGER still requires a human to check its answers, in other words—but it can dramatically expedite the work of scientists like Fairfax by pointing them to thousands of probable beaver sites.

“We’re not going to replace the expertise of biologists,” Ackerstein says. “But the model’s success is making human identification much more efficient.”

According to Fairfax, EEAGER’s use cases are many. The model could be used to estimate beaver numbers, monitor population trends, and calculate beaver-provided ecosystem services like water storage and fire prevention. It could help states figure out where to reintroduce beavers, where to target stream and wetland restoration, and where to create conservation areas. It could allow researchers to track beavers’ spread in the Arctic as the rodents move north with climate change; or their movements in South America, where beavers were introduced in the 1940s and have since proliferated. “We literally cannot handle all the requests we’re getting,” says Fairfax, who serves as EEAGER’s scientific adviser.

The algorithm’s most promising application might be in California. The Golden State has a tortured relationship with beavers: For decades, the state generally denied that the species was native, the byproduct of an industrial-scale fur trade that wiped beavers from the West Coast before biologists could properly survey them. Although recent historical research proved that beavers belong virtually everywhere in California, many water managers and farmers still perceive them as nuisances, and frequently have them killed for plugging up road culverts and meddling with irrigation infrastructure.

Yet those deeply entrenched attitudes are changing. After all, no state is in more dire need of beavers’ water-storage services than flammable, drought-stricken, flood-prone California. In recent years, thanks to tireless lobbying by a campaign called Bring Back the Beaver, the California Department of Fish and Wildlife has begun to overhaul its outdated beaver policies. In 2022, the state budgeted more than $1.5 million for beaver restoration, and announced it would hire five scientists to study and support the rodents. It also revised its official approach to beaver conflict to prioritize coexistence over lethal trapping. And, this fall, the wildlife department relocated a family of seven beavers onto the ancestral lands of the Mountain Maidu people—the state’s first beaver release in almost 75 years.

It’s only appropriate, then, that California is where EEAGER is going to get its first major test. The Nature Conservancy and Google plan to run the model across the state sometime in 2024, a comprehensive search for every last beaver dam and pond. That should give the state’s wildlife department a good sense of where its beavers are living, roughly how many it has, and where it could use more. The model will also provide California with solid baseline data against which it can compare future populations, to see whether its new policies are helping beavers recover. “When you have imagery that’s repeated frequently, that gives you the opportunity to understand change through time,” says the Conservancy’s Kristen Wilson.

What’s next for EEAGER after its California trial? The main thing, Ackerstein says, is to train it to identify beaverworks in new places. (Although beaver dams and ponds present as fairly similar in every state, the model also relies on context clues from the surrounding landscape, and a sagebrush plateau in Wyoming looks very different from a deciduous forest in Massachusetts.) The team also has to figure out EEAGER’s long-term fate: Will it remain a tool hosted by Google? Spin off into a stand-alone product? Become a service operated by a university or nonprofit?

“That’s the challenge for the future—how do we make this more universally accessible and usable?” Corwin says. The beaver revolution may not be televised, but it will definitely be documented by satellite.

This story originally appeared on wired.com.

How watching beavers from space can help drought-ridden areas bounce back Read More »

otherworldly-mini-yellowstone-found-in-the-deep-sea

Otherworldly mini-Yellowstone found in the deep sea

Follow the crabs —

We’ve known about deep ocean vents for a while, but it’s still hard to find them.

A large collection of white crabs arrayed across rocks on the bottom of the ocean.

Enlarge / “Leading us like breadcrumbs…” A trail of squat lobsters helped researchers locate previously unknown hydrothermal vents. The hydrothermal vents create chemosynthetic ecosystems, so in areas that are mostly barren of life, the appearance of larger animals can be an indicator of vents nearby.

Spectacular scenery, from lush rainforests to towering mountain ranges, dots the surface of our planet. But some of Earth’s most iconic landmarks––ones that may harbor clues to the origin of life on Earth and possibly elsewhere––lay hidden at the bottom of the ocean. Scientists recently found one such treasure in Ecuadorian waters: a submerged mini Yellowstone called Sendero del Cangrejo.

This hazy alien realm simmers in the deep sea in an area called the Western Galápagos Spreading Center––an underwater mountain range where tectonic plates are slowly moving away from each other. Magma wells up from Earth’s mantle here to create new oceanic crust in a process that created the Galápagos Islands and smaller underwater features, like hydrothermal vents. These vents, which pump heated, mineral-rich water into the ocean in billowing plumes, may offer clues to the origin of life on Earth. Studying Earth’s hydrothermal vents could also offer a gateway to finding life, or at least its building blocks, on other worlds.

The newly discovered Sendero del Cangrejo contains a chain of hydrothermal vents that spans nearly two football fields. It hosts hot springs and geyser chimneys that support an array of creatures, from giant, spaghetti-like tube worms to alabaster Galatheid crabs.

The crabs, also known as squat lobsters, helped guide researchers to Sendero del Cangrejo. Ecuadorian observers chose the site’s name, which translates to “Trail of the Crabs,” in their honor.

“It did feel like the squat lobsters were leading us like breadcrumbs, like we were Hansel and Gretel, to the actual vent site,” said Hayley Drennon, a senior research assistant at Columbia University’s Lamont-Doherty Earth Observatory, who participated in the expedition.

The Iguanas Vent Field, where the team did some sampling.

Enlarge / The Iguanas Vent Field, where the team did some sampling.

The joint American and Ecuadorian research team set sail aboard the Schmidt Ocean Institute’s Falkor (too) research vessel in mid-August in search of new hydrothermal vents. They did some mapping and sampling on the way to their target location, about 300 miles off the west coast of the Galápagos.

The team used a ‘Tow-Yo’ technique to gather and transmit real-time data to the crew aboard the ship. “We lowered sensors attached to a long wire to the seafloor, and then towed the wire up and down like a yo-yo,” explained Roxanne Beinart, an associate professor at the University of Rhode Island and the expedition’s chief scientist. “This process allowed us to monitor changes in temperature, water clarity, and chemical composition to help pinpoint potential hydrothermal vent locations.”

When they reached a region that seemed promising, they deployed the remotely operated vehicle SuBastian for a better look. Less than 24 hours later, the team began seeing more and more Galatheid crabs, which they followed until they found the vents.

The crabs were particularly useful guides since the vent fluids there are clear, unlike “black smokers” that create easy-to-see plumes. SuBastian explored the area for about 43 hours straight in the robot’s longest dive to date.

But the true discovery process spanned decades. Researchers have known for nearly 20 years that the area was likely home to hydrothermal activity thanks to chemical signals measured in 2005. About a decade later, teams ventured out again and collected animal samples. Now, due to the Schmidt Ocean Institute’s recent expedition, scientists have the most comprehensive data set ever for this location. It includes chemical, geological, and biological data, along with the first high-temperature water samples.

“It’s not uncommon for an actual discovery like this to take decades,” said Jill McDermott, an associate professor at Lehigh University and the expedition’s co-chief scientist. “The ocean is a big place, and the locations are very remote, so it takes a lot of time and logistics to get out to them.” The team will continue their research onshore to help us understand how hydrothermal vents influence our planet.

Genesis from hell?

Sendero del Cangrejo may compare to a small-scale Yellowstone in some ways, but it’s no tourist destination. It’s pitch-black since sunlight can’t reach the deep ocean floor. The crushing weight of a mile of water presses down from overhead. And the vents are hot and toxic. Some of them clocked in at 290º C (550º F)—nearly hot enough to melt lead.

Before scientists discovered hydrothermal vents in 1977, they assumed such extreme conditions would preclude the possibility of life. Yet that trailblazing team saw multiple species thriving, including white clams that guided them to the vents the same way the Galatheid crabs led the modern researchers to Sendero del Cangrejo.

A series of seafloor photos shows the sudden appearance of live white clams that led scientists to find hydrothermal vents for the first time.

A series of seafloor photos shows the sudden appearance of live white clams that led scientists to find hydrothermal vents for the first time.

Before the 1977 find, no one knew life could survive in such a hostile place. Now, scientists know there are microbes called thermophiles that can only live in high temperatures (up to about 120º C, or 250º F).

Bacteria that surround hydrothermal vents don’t eat other organisms or create energy from sunlight like plants do. Instead, they produce energy using chemicals like methane or hydrogen sulfide that emanate from the vents. This process, called chemosynthesis, was first identified through the characterization of organisms discovered at these vents. Chemosynthetic bacteria are the backbone of hydrothermal vent ecosystems, serving as a nutrition source for higher organisms.

Some researchers suggest life on Earth may have originated near hydrothermal vents due to their unique chemical and energy-rich conditions. While the proposal remains unproven, the discovery of chemosynthesis opened our eyes to new places that could host life.

The possibility of chemosynthetic creatures diminishes the significance of so-called habitable zones around stars, which describe the orbital distances between which surface water can remain liquid on a planet or moon. The habitable zone in our own Solar System extends from about Venus’ orbit out nearly to Mars’.

NASA’s Europa Clipper mission is set to launch late next year to determine whether there are places below the surface of Jupiter’s icy moon, Europa, that could support life. It’s a lot colder out there, well beyond our Solar System’s habitable zone, but scientists think Europa is internally heated. It experiences strong tidal forces from Jupiter’s gravity, which could create hydrothermal activity on the moon’s ocean floor.

Several other moons in our Solar System also host subsurface oceans and experience the same tidal heating that could potentially create habitable conditions. By exploring Earth’s hydrothermal vents, scientists could learn more about what to look for in similar environments elsewhere in our Solar System.

“The Ocean’s Multivitamin”

While hydrothermal vents are relatively new to science, they’re certainly not new to our planet. “Vents have been active since Earth’s oceans first formed,” McDermott said. “They’ve been present in our oceans for as long as we’ve had them, so about 3 billion years.”

During that time, they’ve likely transformed our planet’s chemistry and geology by cycling chemicals and minerals from Earth’s crust throughout the ocean.

“All living things on Earth need minerals and elements that they get from the crust,” said Peter Girguis, a professor at Harvard University, who participated in the expedition. “It’s no exaggeration to say that all life on earth is inextricably tied to the rocks upon which we live and the geological processes occurring deep inside the planet…it’s like the ocean’s multivitamin.”

But the full extent of the impact hydrothermal vents have on the planet remains unknown. In the nearly 50 years since hydrothermal vents were first discovered, scientists have uncovered hundreds more spread around the globe. Yet no one knows how many remain unidentified; there are likely thousands more vents hidden in the deep. Detailed studies, like those the expedition scientists are continuing onshore, could help us understand how hydrothermal activity influences the ocean.

ROV SuBastian takes water and chemical samples from a black smoker hydrothermal vent in the Iguanas Vent Field, Galapagos Islands.

Enlarge / ROV SuBastian takes water and chemical samples from a black smoker hydrothermal vent in the Iguanas Vent Field, Galapagos Islands.

The team’s immediate observations offer a good starting point for their continued scientific sleuthing.

“I actually expected to find denser animal populations in some places,” Beinart said.

McDermott thinks that could be linked to the composition of the vent fluids. “Several of the vents were clear—not very particle-rich,” she said. “They’re probably lower in minerals, but we’re not sure why.” Now, the team will measure different metal levels in water samples from the vent fluids to figure out why they’re low in minerals and whether that has influenced the animals the vents host.

Researchers are learning more about hydrothermal vents every day, but many mysteries remain, such as the eventual influence ocean acidification could have on vents. As they seek answers, they’re sure to find more questions and open up new avenues of scientific exploration.

Ashley writes about space as a contractor for NASA’s Goddard Space Flight Center by day and freelances as an environmental writer. She holds a master’s degree in space studies from the University of North Dakota and is finishing a master’s in science writing through The Johns Hopkins University. She writes most of her articles with one of her toddlers on her lap.

Otherworldly mini-Yellowstone found in the deep sea Read More »

researchers-come-up-with-better-idea-to-prevent-airtag-stalking

Researchers come up with better idea to prevent AirTag stalking

Picture of AirTag

BackyardProduction via Getty Images

Apple’s AirTags are meant to help you effortlessly find your keys or track your luggage. But the same features that make them easy to deploy and inconspicuous in your daily life have also allowed them to be abused as a sinister tracking tool that domestic abusers and criminals can use to stalk their targets.

Over the past year, Apple has taken protective steps to notify iPhone and Android users if an AirTag is in their vicinity for a significant amount of time without the presence of its owner’s iPhone, which could indicate that an AirTag has been planted to secretly track their location. Apple hasn’t said exactly how long this time interval is, but to create the much-needed alert system, Apple made some crucial changes to the location privacy design the company originally developed a few years ago for its “Find My” device tracking feature. Researchers from Johns Hopkins University and the University of California, San Diego, say, though, that they’ve developed a cryptographic scheme to bridge the gap—prioritizing detection of potentially malicious AirTags while also preserving maximum privacy for AirTag users.

The Find My system uses both public and private cryptographic keys to identify individual AirTags and manage their location tracking. But Apple developed a particularly thoughtful mechanism to regularly rotate the public device identifier—every 15 minutes, according to the researchers. This way, it would be much more difficult for someone to track your location over time using a Bluetooth scanner to follow the identifier around. This worked well for privately tracking the location of, say, your MacBook if it was lost or stolen, but the downside of constantly changing this identifier for AirTags was that it provided cover for the tiny devices to be deployed abusively.

In reaction to this conundrum, Apple revised the system so an AirTag’s public identifier now only rotates once every 24 hours if the AirTag is away from an iPhone or other Apple device that “owns” it. The idea is that this way other devices can detect potential stalking, but won’t be throwing up alerts all the time if you spend a weekend with a friend who has their iPhone and the AirTag on their keys in their pockets.

In practice, though, the researchers say that these changes have created a situation where AirTags are broadcasting their location to anyone who’s checking within a 30- to 50-foot radius over the course of an entire day—enough time to track a person as they go about their life and get a sense of their movements.

“We had students walk through cities, walk through Times Square and Washington, DC, and lots and lots of people are broadcasting their locations,” says Johns Hopkins cryptographer Matt Green, who worked on the research with a group of colleagues, including Nadia Heninger and Abhishek Jain. “Hundreds of AirTags were not near the device they were registered to, and we’re assuming that most of those were not stalker AirTags.”

Apple has been working with companies like Google, Samsung, and Tile on a cross-industry effort to address the threat of tracking from products similar to AirTags. And for now, at least, the researchers say that the consortium seems to have adopted Apple’s approach of rotating the device public identifiers once every 24 hours. But the privacy trade-off inherent in this solution made the researchers curious about whether it would be possible to design a system that better balanced both privacy and safety.

Researchers come up with better idea to prevent AirTag stalking Read More »

corvids-seem-to-handle-temporary-memories-the-way-we-do

Corvids seem to handle temporary memories the way we do

Working on memory —

Birds show evidence that they lump temporary memories into categories.

A black bird with yellow eyes against a blue sky.

Enlarge / A jackdaw tries to remember what color it was thinking of.

Humans tend to think that we are the most intelligent life-forms on Earth, and that we’re largely followed by our close relatives such as chimps and gorillas. But there are some areas of cognition in which homo sapiens and other primates are not unmatched. What other animal’s brain could possibly operate at a human’s level, at least when it comes to one function? Birds—again.

This is far from the first time that bird species such as corvids and parrots have shown that they can think like us in certain ways. Jackdaws are clever corvids that belong to the same family as crows and ravens. After putting a pair of them to the test, an international team of researchers saw that the birds’ working memory operates the same way as that of humans and higher primates. All of these species use what’s termed “attractor dynamics,” where they organize information into specific categories.

Unfortunately for them, that means they also make the same mistakes we do. “Jackdaws (Corvus monedula) have similar behavioral biases as humans; memories are less precise and more biased as memory demands increase,” the researchers said in a study recently published in Communications Biology.

Remembering not to forget

Working memory is where we hang on to items for a brief period of time—like a postal code looked up in one browser tab and typed into a second. It can hold everything from numbers and words to images and concepts. But these memories deteriorate quickly, and the capacity is limited—the more things we try to remember, the less likely the brain is going to remember them all correctly.

Attractor dynamics give the brain an assist with working memory by taking sensory input, such as color, and categorizing it. The highly specific red shade “Fire Lily” might fade from working memory quickly, and fewer specifics will stick around as time passes, yet it will still be remembered as “red.” You lose specifics first, but hang on to the general idea longer.

Aside from time, the other thing that kills working memory is distractions. Less noise—meaning distracting factors inside and outside the brain—will make it easier to distinguish Fire Lily among the other reds. If a hypothetical customer was browsing paint swatches for Sandstone (a taupe) and London Fog (a gray) in addition to Fire Lily, remembering each color accurately would become even more difficult because of the increased demands on working memory.

Bias can also blur working memory and cause the brain to remember some red hues more accurately than others, especially if the brain compartmentalizes them all under “red.” This can happen when a particular customer has a certain idea of the color red that leans warmer or cooler than Fire Lily. If they view red as leaning slightly warmer than Fire Lily, they might believe a different, warmer red is Fire Lily.

In living color

To find out if corvids process stimuli using short-term memory with attractor dynamics, the researchers subjected two jackdaws to a variety of tests that involved remembering colors. Each bird had to peck on a white button to begin the test. They were then shown a color—the target color—before being shown a chart of 64 colors. The jackdaws had to look at that chart and peck the color they had previously been shown. A correct answer would get them their favorite treat, while responses that were close but not completely accurate would get them other treats.

While the birds performed well with just one color, their accuracy went down as the researchers challenged them to remember more target colors from the chart at once. They were more likely to pick colors that were close to, but not exactly, the target colors they had been shown—likely because there was a greater load on their short-term memory.

This is what we’d see if a customer had to remember not only Fire Lily, but Sandstone and London Fog. The only difference is that we humans would be able to read the color names, and the jackdaws only found out they were wrong when they didn’t get their favorite treat.

“Despite vastly different visual systems and brain organizations, corvids and primates show similar attractor dynamics, which can mitigate noise in visual working memory representations,” the researchers said in the same study.

How and why birds evolved attractor dynamics still needs to be understood. Because avian eyesight differs from human eyesight, there could have been differences in color perception that the research team was unable to account for. However, it seems that the same mechanisms for working memory that evolved in humans and other primates also evolved separately in corvids. “Birdbrain” should be taken as a compliment.

Communications Biology, 2023. DOI:  10.1038/s42003-023-05442-5

Corvids seem to handle temporary memories the way we do Read More »

pax-unplugged-2023:-how-indie-devs-build-and-sell-new-board-games

PAX Unplugged 2023: How indie devs build and sell new board games

PAX Unplugged 2023 —

Tabletop is bigger than ever. What’s it like trying to get your game out there?

Corporate Vampire testing pitch at PAX Unplugged 2023

Enlarge / Given only this sign, and a glimpse of some pieces, a constant stream of playtesters stopped by to check out what was then called Corporate Vampire.

Kevin Purdy

“You don’t want Frenzy. Frenzy is a bad thing. It might seem like it’s good, but trust me, you want to have a blood supply. Frenzy leads to Consequences.”

It’s mid-afternoon in early December in downtown Philadelphia’s Pennsylvania Convention Center, and I’m in the Unpub room at PAX Unplugged. Michael Schofield and Tim Broadwater of Design Thinking Games have booked one of the dozens of long card tables to show their game Corporate Vampire to anybody who wants to try it. Broadwater is running the game and explaining the big concepts while Schofield takes notes. Their hope is that after six revisions and 12 smaller iterations, their game is past the point where someone can break it. But they have to test that disheartening possibility in public.

I didn’t expect to spend so much of my first PAX Unplugged hanging around indie game makers. But with the tabletop industry expanding after some massive boom years, some Stranger Things and Critical Role infusions, and, of course, new COVID-borne habits, it felt like a field that was both more open to outsiders than before and also very crowded. I wanted to see what this thing, so big it barely fit inside a massive conference center, felt like at the smaller tables, to those still navigating their way into the industry.

Here are a few stories of parties venturing out on their own, developing their character as they go.

How much vampire influence is too much?

Corporate Vampire (or “CorpVamp”) has been in the works since summer 2022. The name came from an earlier, more Masquerade-ish idea of the game, in which you could take over a city council, build blood banks, and wield political influence. But testing at last year’s Unplugged, and the creators’ own instincts, gradually revealed a truth. “People really like eating other people,” Schofield says.

Along with input from game designer Connor Wake, the team arrived at their new direction: “More preying, more powers that make players feel like mist-morphing badasses, more Salem’s Lot, less The Vampire Lestat.”

By the end of the weekend, they’ll have taken up a playtester’s naming suggestion: Thirst. But for now, the signs all say CorpVamp, and the test game is a mixture of stock and free-use art, thick cardboard tiles, thin paper tokens, glossy card decks, generic colored wooden cubes, and a bunch of concepts for players to track—perhaps too many.

Hand-cut tokens and make-do squares for an early version of <em>Thirst</em>.” height=”960″ src=”https://cdn.arstechnica.net/wp-content/uploads/2023/12/IMG_3964-Large.jpeg” width=”1280″></img><figcaption>
<p>Hand-cut tokens and make-do squares for an early version of <em>Thirst</em>.</p>
<p>Kevin Purdy</p>
</figcaption></figure>
<p>The way <i>CorpVamp</i>/<i>Thirst</i> should go is that each night, a vampire wakes up, loses a little blood, then sets out to get much more back by exploring a Victorian city. In populated neighborhoods, a vampire can feast on people—but doing so generates a board-altering Consequence, such as roving security guards or citizens discovering bodies. Vampires accumulate victims and hypnotize them for Influence, depending on who the victims are (“Judge” versus “Roustabout,” for example), turn them into “Baby Vampires,” or simply keep them as blood stock. You win by accruing victory points for various misdeeds and achievements.</p>
<p>One player, who told the designers that a different game’s play-test saw him “break the game in 10 minutes,” seemed bothered by how Consequences can be triggered by a single player’s actions but affect all players. Another has a hard time keeping track of the tokens for influence, movement, and blood, and when to move them on and off the board. That’s called “mess testing,” Schofield tells me, and he’s working on it. Some things will be easier to learn and use when the pieces have better designs and materials. But the <i>CorpVamp</i> team can’t jump to that stage until the mechanics are locked down.</p>
<p>As that group finishes a test, another group sits down immediately, having stood nearby to ensure their chance. Schofield and Broadwater won’t lack for players in their three-hour slot. That tells the team there’s “evidence of a market,” that their game has “stopping power” and “shelf value,” despite its obscurity, Schofield says. But there’s lots of work still to be done in alpha. “The costs of powers are too high, the powers aren’t <i>badass enough</i> [emphasis his], and the tactile movement of placing cubes and flipping tokens isn’t quite right,” he later tells me.</p>
<p>After more iterations and some “blind” play tests (players learning, playing, and finishing the game without creator guidance), the game will be in beta, and the team will get closer to pinning down the look and feel of the game with illustrators and designers. Since their schedules only afford them roughly three hours of dedicated collaboration time every week, they lean on what they’ve learned from their product-oriented day jobs. “Frequent iterations and small feedback loops will iron things out,” Schofield says. “Process wins.”</p>
<p>Then they can “enjoy the problems of production and distribution logistics.” After that, “We’ll sell copies of <i>Thirst</i> at the next PAX Unplugged.”</p>
<figure><img loading=

Kevin Purdy

“Don’t do miniatures for your first version”

I played a few different games at PAX Unplugged that were at various stages before publication. One called WhoKnew? was on its second year at the conference. The first year was simply designer Nicholas Eife tagging along at a friend’s booth, bringing only a piece of paper and asking people who wandered by if they thought a trivia game based on the origins of idioms would work. This year, there was an actual table and a vinyl sign, with an early-stage board and trivia cards laid out.

I drew the phrase “The whole nine yards” and I chose “British Artillery” as its origin. Eife congratulated me (The length of a Vickers machine gun’s ammo belt as the origin of the phrase is far from a solved matter, but I will not concede my point.) I asked the designer what state the game will be in next year. “I guess we’ll have to see,” he said, displaying the slight grin of a person working entirely within their own timeline on a purely passion-driven project. It was almost uncomfortable, this calm, patient demeanor amidst the murmuring chaos of the show floor.

An Indie Game Alliance member demonstrates

An Indie Game Alliance member demonstrates “Outrun the Bear” at the IGA booth at PAX Unplugged 2023

Indie Game Alliance

Perhaps looking for a less idyllic counterpoint, I asked Matt Holden, executive director of the Indie Game Alliance, what it’s typically like for new game makers. For a monthly fee, the Alliance provides game makers with tools typically reserved for big publisher deals. That includes international teams for demonstrating your game, co-op-style discounts on production and other costs, connections to freelancers and other designers, and, crucially, consulting and support on crowdfunding and game design.

Holden and his wife Victoria have been running the Alliance for more than 10 years, almost entirely by themselves. At any given time, the Alliance’s 1,800-plus current and former members have 30-40 Kickstarters or other crowdfunding campaigns going. Crowdfunding is all but essential for most indie game makers, providing them working capital, feedback, and word-of-mouth marketing at the same time. Holden can offer a lot of advice on any given campaign but has only one universal rule.

“Don’t make miniatures for your first version of your game, no matter how big your campaign is getting. Just don’t do it,” Holden said, then paused for a moment. “Unless you worked for a company that made miniatures, and you’re an expert on them, then go ahead. But,” he emphasized, “miniatures are where everyone gets stuck.”

Has the burgeoning interest in tabletop and role-playing changed how indie games get made, pitched, and sold? Holden thinks not. The victories and mistakes he sees from game makers are still the same. Games with unique and quirky angles might have more of a chance now, he said, but finding an audience is still a combination of hard work, networking, product design, and, of course, some luck.

An IGA member demonstrates <em>Last Command</em> at PAX Unplugged 2023″ height=”1928″ src=”https://cdn.arstechnica.net/wp-content/uploads/2023/12/iga2-scaled.jpg” width=”2560″></img><figcaption>
<p>An IGA member demonstrates <em>Last Command</em> at PAX Unplugged 2023</p>
</figcaption></figure>
<p>“I can’t tell somebody what’s going to guarantee their [crowfunding] campaign works. Nobody can,” Holden said. “But you do enough of them, and you see the things that the campaigns that work, and those that don’t, have in common.”</p>
<p>Patience would seem to be one of them. As I sat talking to Holden at the Alliance’s booth, game demo volunteers gently interrupted to ask for advice or the whereabouts of some item for their table. Putting in the time at conventions, game stores, and friends’ tables, testing and demonstrating, is critical, Holden said, and it’s a big part of what the Alliance helps newcomers coordinate.</p>
<p>I later traded emails with Eife of <i>WhoKnew</i> (a title that also seems to be in flux). He was eager to tell me that, after two weeks of conventions, including PAX Unplugged, the feedback and enthusiasm “gave us that boost of confidence and the desire to push.” So he and his team “put our nose to the grindstone and immediately started making corrections and changes.”</p>
<p>I realized, at some point over that weekend, that I’d been holding onto an idea about board game success that was dated, if not outright simplistic. I’d held out the story of <a href=Klaus Teuber’s four years developing Settlers of Catan as the paradigm. He had worked, reportedly unhappily, as a dental technician, tinkering with the game in his basement on nights and weekends, dragging new copies upstairs every so often for his family and friends to test. One day, it was successful enough he could quit messing with people’s teeth.

There were, I would find out, a lot of paths into developing a modern tabletop experience.

Cassi Mothwin, working the +1EXP booth at PAX Unplugged 2023

Cassi Mothwin, working the +1EXP booth at PAX Unplugged 2023

Cassi Mothwin

PAX Unplugged 2023: How indie devs build and sell new board games Read More »

matter,-set-to-fix-smart-home-standards-in-2023,-stumbled-in-the-real-market

Matter, set to fix smart home standards in 2023, stumbled in the real market

A matter for the future —

Gadget makers, unsurprisingly, are hesitant to compete purely on device quality.

Illustration of Matter protocol simplifying a home network

Enlarge / The Matter standard’s illustration of how the standard should align a home and all its smart devices.

CSA

Matter, as a smart home standard, would make everything about owning a smart home better. Devices could be set up with any phone, for either remote or local control, put onto any major platform (like Alexa, Google, or HomeKit) or combinations of them, and avoid being orphaned if their device maker goes out of business. Less fragmentation, more security, fewer junked devices: win, win, win.

Matter, as it exists in late 2023, more than a year after its 1.0 specification was published and just under a year after the first devices came online, is more like the xkcd scenario that lots of people might have expected. It’s another home automation standard at the moment, and one that isn’t particularly better than the others, at least how it works today. I wish it was not so.

Setting up a Matter device isn’t easy, nor is making it work across home systems. Lots of devices with Matter support still require you to download their maker’s specific app to get full functionality. Even if you were an early adopting, Matter-T-shirt-wearing enthusiast, you’re still buying devices that don’t work quite as well, and still generally require a major tech company’s gear to act as your bridge or router.

CSA's illustration of how smart homes worked before Matter, which is unfortunately a lot like how they still work, after.

CSA’s illustration of how smart homes worked before Matter, which is unfortunately a lot like how they still work, after.

CSA

Lights that Matter, but do less

Jennifer Pattison Tuohy at The Verge has done more Matter writing, and testing, than just about anybody out there who doesn’t work for the Connectivity Standards Alliance that oversees the spec. As she puts it:

I’ve been testing Matter devices all year, and it has been the most frustrating year of my decade-plus experience with smart home devices. Twelve months in, I do not have one Matter-based device working reliably in my home. To make matters worse (yeah, I know), the one system that’s always been rock solid, my Philips Hue smart lights, is basically unusable in any of my smart home platforms since I moved it to Matter.

When the Matter upgrade for Hue lights rolled out in September, I didn’t move to switch my bulbs over. For one thing, it wouldn’t result in a net loss of limited-purpose hardware (i.e. hubs). If you wanted to move your Hue bulbs over to Matter and control them through Google’s Home app, you’d need a Google Home Hub or Home Mini to act as a Matter bridge device. The same goes for Alexa (Echo devices), Samsung SmartThings (a Hub), or Apple Home (an Apple TV or HomePod/mini). You also lose some Hue-specific function, like gradient lighting and scenes (like holiday green/red schemes). And, as Tuohy has noted, it’s likely not a more reliable network than the proprietary Zigbee setup that Hue ran on before.

The smart home and automation market is like that pretty much everywhere. Aqara offers a Matter-compliant light strip, the T1, but it requires a hub, and using Matter means you can’t use Apple’s light-sensing adaptive brightness, because Matter doesn’t support that yet. The same goes for Nanoleaf’s Matter-friendly bulbs and strips, which are Matter and Thread capable but require Nanoleaf’s own app to provide Nanoleaf’s version of adaptive lighting.

Apple Developer

Matter, set to fix smart home standards in 2023, stumbled in the real market Read More »