mutations

we-still-don’t-understand-how-one-human-apparently-got-bird-flu-from-a-cow

We still don’t understand how one human apparently got bird flu from a cow

Holstein dairy cows in a freestall barn.

Enlarge / Holstein dairy cows in a freestall barn.

The US Department of Agriculture this week posted an unpublished version of its genetic analysis into the spillover and spread of bird flu into US dairy cattle, offering the most complete look yet at the data state and federal investigators have amassed in the unexpected and worrisome outbreak—and what it might mean.

The preprint analysis provides several significant insights into the outbreak—from when it may have actually started, just how much transmission we’re missing, stunning unknowns about the only human infection linked to the outbreak, and how much the virus continues to evolve in cows. The information is critical as flu experts fear the outbreak is heightening the ever-present risk that this wily flu virus will evolve to spread among humans and spark a pandemic.

But, the information hasn’t been easy to come by. Since March 25—when the USDA confirmed for the first time that a herd of US dairy cows had contracted the highly pathogenic avian influenza H5N1 virus—the agency has garnered international criticism for not sharing data quickly or completely. On April 21, the agency dumped over 200 genetic sequences into public databases amid pressure from outside experts. However, many of those sequences lack descriptive metadata, which normally contains basic and key bits of information, like when and where the viral sample was taken. Outside experts don’t have that crucial information, making independent analyses frustratingly limited. Thus, the new USDA analysis—which presumably includes that data—offers the best yet glimpse of the complete information on the outbreak.

Undetected spread

One of the big takeaways is that USDA researchers think the spillover of bird flu from wild birds to cattle began late last year, likely in December. Thus, the virus likely circulated undetected in dairy cows for around four months before the USDA’s March 25 confirmation of an infection in a Texas herd.

This timeline conclusion largely aligns with what outside experts previously gleaned from the limited publicly available data. So, it may not surprise those following the outbreak, but it is worrisome. Months of undetected spread raise significant concerns about the country’s ability to identify and swiftly respond to emerging infectious disease outbreaks—and whether public health responses have moved past the missteps seen in the early stages of the COVID-19 pandemic.

But another big finding from the preprint is how many gaps still exist in our current understanding of the outbreak. To date, the USDA has identified 36 herds in nine states that have been infected with H5N1. The good news from the genetic analysis is that the USDA can draw lines connecting most of them. USDA researchers reported that “direct movement of cattle based upon production practices” seems to explain how H5N1 hopped from the Texas panhandle region—where the initial spillover is thought to have occurred—to nine other states, some as far-flung as North Carolina, Michigan, and Idaho.

Bayes factors for inferred movement between different discrete traits of H5N1 clade 2.3.4.4b viruses demonstrating the frequency of movement.

Enlarge / Bayes factors for inferred movement between different discrete traits of H5N1 clade 2.3.4.4b viruses demonstrating the frequency of movement.

Putative transmission pathways of HPAI H5N1 clade 2.3.4.4b genotype B3.13 supported by epidemiological links, animal movements, and genomic analysis.

Enlarge / Putative transmission pathways of HPAI H5N1 clade 2.3.4.4b genotype B3.13 supported by epidemiological links, animal movements, and genomic analysis.

Putative transmission pathways of HPAI H5N1 clade 2.3.4.4b genotype B3.13 supported by epidemiological links, animal movements, and genomic analysis. [/ars_img]The bad news is that those lines connecting the herds aren’t solid. There are gaps in which the genetic data suggests unidentified transmission occurred, maybe in unsampled cows, maybe in other animals entirely. The genetic data is clear that once this strain of bird flu—H5N1 clade 2.3.4.4 genotype B3.13 —hopped into cattle, it could readily spread to other mammals. The genetic data links viruses from cattle moving many times into other animals: There were five cattle-to-poultry jumps, one cattle-to-raccoon transmission, two events where the virus moved from cattle to domestic cats, and three times when the virus from cattle spilled back into wild birds.

“We cannot exclude the possibility that this genotype is circulating in unsampled locations and hosts as the existing analysis suggests that data are missing and undersurveillance may obscure transmission inferred using phylogenetic methods,” the USDA researchers wrote in their preprint.

We still don’t understand how one human apparently got bird flu from a cow Read More »

new-e.-coli-strain-will-accelerate-evolution-of-the-genes-of-your-choice

New E. coli strain will accelerate evolution of the genes of your choice

Making mutants —

Strain eliminates the trade-offs of a high mutation rate.

Woman holding a plate of bacteria with clusters of bacteria on it.

Genetic mutations are essential for innovation and evolution, yet too many—or the wrong ones—can be fatal. So researchers at Cambridge established a synthetic “orthogonal” DNA replication system in E. coli that they can use as a risk-free way to generate and study such mutations. It is orthogonal because it is completely separate from the system that E. coli uses to copy its actual genome, which contains the genes E. coli needs to survive.

The genes in the orthogonal system are copied with an extraordinarily error-prone DNA replication enzyme, which spurs rapid evolution by generating many random mutations. This goes on while E. coli’s genes are replicated by its normal high-fidelity DNA copying enzyme. The two enzymes work alongside each other, each doing their own thing but not interfering with the other’s genes.

Engineering rapid mutation

Such a cool idea, right? The scientists stole it from nature. Yeast already has a system like this, with a set of genes copied by a dedicated enzyme that doesn’t replicate the rest of the genome. But E. coli is much easier to work with than yeast, and its population can double in 20 minutes, so you can get a lot of rounds of replication and evolution done fast.

The researchers generated the system by pillaging a phage—a virus that infects E. coli. They took out all of the phage genes that allow the phage to grow uncontrollably until it bursts the E. coli cell it infected open. The engineering left only a cassette containing the genes responsible for copying the phage genome. Once this cassette was inserted into the E. coli genome, it could simultaneously replicate at least three different strings of genes placed next to it in the DNA, maintaining them for over a hundred generations—all while leaving the rest of the E. coli genome to be copied by other enzymes.

The scientists then tweaked the mutation rate of the orthogonal DNA-replicating enzyme, eventually enhancing it 1,000-fold. To test if the system could be used to evolve new functions, they inserted a gene for resistance to one antibiotic and saw how long it took for that gene to mutate into one conferring resistance to a different antibiotic. Within twelve days, they got 150 times more resistance to the new antibiotic. They also inserted the gene encoding green fluorescent protein and increased its fluorescence over 1,000-fold in five days.

Evolving detoxification

Not 20 pages later, in the same issue of Science, Frances Arnold’s lab has a paper that provides evidence of how powerful this approach could be. This team directed the evolution of an enzyme the old-fashioned way: through sequential rounds of random mutagenesis and selection for the desired trait. Arnold won The Nobel Prize in Chemistry 2018 for the directed evolution of enzymes, so she knows what she’s about. In this recent work, her lab generated an enzyme that can biodegrade volatile methyl siloxanes. We make megatons of these compounds every year to stick in cleaning products, shampoos and lotions, and industrial products, but they linger in the environment. They contain carbon-silicon bonds, which were never a thing until humans made them about 80 years ago; since nature never made these bonds, there is no natural way to break them, either.

“Directed evolution with siloxane was particularly challenging,” the authors note in their introduction, for various technical reasons. “We started from an enzyme we had previously engineered for other chemistry on siloxanes—that enzyme, unlike the natural enzyme, showed a tiny bit of activity for siloxane Si-C bond cleavage. The overall project, however, from initial discovery to figuring out how to measure what we wanted, took several years,” Arnold said. And it is only the first step in possibly rendering siloxanes biodegradable. The accelerated continuous evolution that the new orthologous system allows will hopefully greatly facilitate the development of enzymes and other proteins like this that will have applications in research, medicine, and industry.

We do not (yet) have machines that can efficiently assemble long stretches of DNA or make proteins. But cells do these things extremely efficiently, and E. coli cells have long been the ones used in the lab as little factories, churning out whatever genes or proteins researchers program into them. Now E. coli can be used for one more molecular task—they can be little hotbeds of evolution.

Science, 2024.  DOI: 10.1126/science.adi5554, 10.1126/science.adk1281

New E. coli strain will accelerate evolution of the genes of your choice Read More »